\square These slides/notes represent only part of the course, and were accompanied by face-to-face explanations on white-board and additional topics / learning materials.
\square In preparation of these slides I have also benefited from various books and online material.
Some of the slides contain animations which may not be visible in pdf version.
Corrections, comments, feedback may be sent to https://www.linkedin.com/in/naveedrazzaqbutt/

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Introductions ...

- Me
- You
- The Course

GIK Institute

BS in Engineering Sciences

[1998-2002]

Automation Engineer [2002-2004]

Riyadh Water Transportation System's SCADA upgrade project

Jouf University [2018...] Assistant Professor
College of Engineering

Teacher

Researcher

As a teacher

Full Courses

- Stochastic Processes
- Statistical DSP \& Modelling
- Probabilistic Methods in Engineering
- Wave Propagation \& Antennas
- Principles of Communications
- Digital Communications
- Satellite Communications
- Circuit Analysis II

Labs \& Tutorials

- Time Series Analysis
- Signal Theory
- Advanced Control
- Modern Control Systems
- Digital Design

Supervision

Supervised and collaborated in various grad and postgrad theses.

As a researcher

Spectroscopy

- Nuclear Quadrupole Resonance (NQR) signal detection
- Raman Signal Classification

Spectrum Estimation

- Missing Samples Cases
- Poly-spectra
- Coherence Spectra

Beamforming

- Radar \& Sonar

Pitch Estimation

Communications

- WiFi \& 5G
- Antenna Arrays

Control

- Nonlinear Plant Modelling \& Control

One of my research projects...

CONPHIRMER Project

Question: how to quickly tell whether a medicine is fake?

NMR vs. NQR

NQR Signal

NQR Signal Modeling

$$
\begin{aligned}
& \text { (s) Seal } \\
& y_{m}^{(p)}(t)=\sum_{k=1}^{d^{(p)}} \alpha_{k}^{(p)} e^{-(t+m \mu) \eta_{k}^{(p)}} e^{-\beta_{k}^{(p)}\left|t-t_{s p}\right|+i \omega_{k}^{(p)}(T) t} \\
& \omega_{k}^{(p)}(T)=a_{k}^{(p)}-b_{k}^{(p)} T \\
& \alpha_{k}^{(p)}=\rho \kappa_{k}^{(p)} \quad\left\|\kappa-\kappa_{a}\right\|_{2}^{2} \leq \epsilon
\end{aligned}
$$

Introductions ...

- Me
- You
- The Course

I hate this course

I hate this course

What is a signal and what is a system? (from engineering mathematics perspective)

Chapter 1

Signals

Systems

號

What are some of the common types of signals and systems?

Chapter 1

What are some of the useful properties of signals and systems?

Chapter 1

Four major ways of modelling and analyzing signals and systems.

Time Domain
Laplace
Z-Transform
Fourier

Chapters 2, 3
Chapter 4
Chapter 5
Chapters 6, 7, 9

. 9998			
. 9994			
. 9986			
. 9976			
. 9962			
. 9945			
. 9925			
. 9903	. 6947		
. 9877	.6820		
9848	.6691		
	. 6561		
. 9816	. 6428		
. 9781			
. 9744			
. 9703	. 6157		
. 9659	. 5878		
. 9613	. 5736		
. 9563	. 5592		
. 9511	. 5446		
. 9455	. 5299		
.9397	. 5150		
	. 5000		
. 9336			
. 9272	. 4848		
. 9205	. 4695		
. 9135	. 4540		
. 9063	. 4384		
	. 4226		
.8988		- Signals and Systems / Dr. Naveed R. Butt @ GIKI - FES	30
8910	. 4067		

How do signals and systems interact?

Chapters 2-7

Important Business!!

- 80% attendance is mandatory!
- Textbook
- Lathi, B. P., and Green R. A., Linear Systems and Signals (3 $3^{\text {rd }}$ ed.), NY: Oxford University Press (2018)
- Contact
- naveed.butt@giki.edu.pk
- office: FES G-13

Learning Plan

- Lectures

- Help discover and grasp new concepts
- Quizzes \& Assignments
- Help prepare/revise each week's concepts
- Keep you from lagging behind in course
- Presentation
- Helps learn independent work \& presentation
- Prepares for final year project

Course Learning Objectives (CLOs)

CLO \#	Domain	Description	Assessment
CLO 1	Cognitive/Applying	Apply the basic knowledge of signals and systems to categorize and solve basic operations of signals and systems.	Quiz, Mid, Assign., Final
CLO 2	Cognitive/Applying	Calculate parameters related to continuous-time and discrete- time signals and systems in the time domain.	Quiz, Mid, Assign., Final
CLO 3	Cognitive/Analyzing	Analyze continuous-time and discrete-time signals and systems in the transform domains including Laplace, Fourier, and Z transforms.	Assign., Final Mid,

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Vocabulary

زبانِ يارِ مَن تُركى •

What a moose hears

Vocabulary - Signals \& Systems

- Signal
- System
- Continuous-Time
- Discrete-Time
- Impulse
- Step
- Transform
- Time Domain
- Frequency Domain
- Response
- Convolution

"Signal"

"Signal"

A SET OF DATA OR INFORMATION!

"Signal"

A SET OF DATA OR INFORMATION!

How do we normally represent data/information?
"Signal"
A SET OF DATA OR INFORMATION!
.9998

- 9994
-9986
4976
9962
9945
9925
.9903
-9877
9848
9816
9781
9744
9703
-9659
9613 -9563 .9511 .9455 .9397
.9336
.9272
-9205
9135 .9063 A988 . 8829 -8746
$\cos (t)$

"Signal"

"Signal"

For temperature across a rod, x-axis could be along the length.

"System"

"System"

AN ENTITY THAT PROCESSES A SIGNAL

"System"

AN ENTITY THAT PROCESSES A SIGNAL

"Continuous-Time"

"Discrete-Time"

"Continuous-Time"

X -axis is a continuous variable (can take any value in a given range).

X -axis is a discrete variable (cannot take all values in a given range, e.g. $n=$
$1,2,3, \ldots$)
"Impulse"

"Impulse"

impulse
 noun
 UK (i)) /'im.p^ls/ us (i)) /'im.p^ls/

impulse noun (WISH)
C2 [C + to infinitive $]$

C2 [C + to infinitive]
a sudden strong wish to do something:
\uparrow

"Impulse"

Sometimes we want to give a very brief "touch" to a system to see its reaction.

Sometimes we want to give a very brief "touch" to a system to see its reaction.

Continuous-Time Case

$$
\delta(t)=0 \quad t \neq 0 \quad \text { and } \quad \int_{-\infty}^{\infty} \delta(t) d t=1
$$

Sometimes we want to give a very brief "touch" to a system to see its reaction.

Discrete-Time Case

$$
\delta[n]= \begin{cases}1 & n=0 \\ 0 & n \neq 0\end{cases}
$$

"Step"

$$
u(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Continuous-Time Case

Discrete-Time Case

$$
u[n]= \begin{cases}1 & \text { for } n \geq 0 \\ 0 & \text { for } n<0\end{cases}
$$

"Transform"

A transform is an alternate form or representation of something.

"Transform"

This is clearly a sine function. Only information I need to record is:
(a) This is a sine function
(b) It has amplitude 1
(c) It has frequency 1 kHz

"Transform"

A transform is an alternate form or representation of something.

Time Domain

Two alternate representations of $\sin (1000 t)$

Frequency Domain

"Response"

The Case of Double Shah

Response is what a system does to a signal entering it.

Give me one rupee, and l'll give
you two!

"Response"

The Case of Double Shah

Response is what a system does to a signal entering it.

Give me one rupee, and I'll give you two!

System "response", let's call it h, then $y=h x$ with $h=2$.

"Convolution"

"Convolution"

(1) convoluted

/.knnve'l(j)u:trd/
adjective

1. (especially of an argument, story, or sentence) extremely complex and difficult to follow. "the film is let down by a convoluted plot in which nothing really happens"

Similar: complicated (complex) involved (intricate) elaborate) (impenetrable
2. TECHNICAL
intricately folded, twisted, or coiled.
"walnyts come in hard and convoluted shells"

"Convolution"

A MATHEMATICAL OPERATION
 (JUST AS,,$+- \times, \div$) THAT HELPS US CALCULATE THE RESPONSE OF A SPECIAL TYPE OF SYSTEMS.

Convolution is often denoted by *

The Curious (and Completely Made Up) Case of Quadruple Shah

Give me one rupee today, and I'll give you two rupees tomorrow and two rupees day-after-tomorrow!

The Curious (and Completely Made Up) Case of Quadruple Shah

The Curious (and Completely Made Up) Case of Quadruple Shah

Give me one rupee today, and I'll give you two rupees tomorrow and two rupees day-after-tomorrow!

Give me one rupee today, and I'll give you two rupees tomorrow and two rupees day-after-tomorrow!

Give me one rupee today, and I'll give you two rupees tomorrow and two rupees day-after-tomorrow!

Tuesday	2
Wednesday	$2+4=6$
Thursday	4

Convolution helps us calculate such outputs mathematically.

Convolution Shortcut: Multiply overlapping cells and add the results! (then slide input right and repeat!)

We will see a precise formulation of convolution later in the course...

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Signal Basics I

Types

Several classifications of signals.

Examples

Some practice problems

Engineers like to classify...

1. Is the x-axis continuous or discrete?

"Continuous-Time"

Vs.
"Discrete-Time"

X-axis is a continuous variable (can take any value in a given range).

X -axis is a discrete variable (cannot take all values in a given range, e.g. $n=$ $1,2,3, \ldots)$

2. Is the y-axis also discrete (or continuous)?

"Analog"
Vs.
"Digital"

Analog

- Most signals in real life are analog.
- Analog = both x and y axes are continuous.
- Continuous? No breaks. Can take any value in a given range.
- e.g., temperature in this room

Continuous in time (e.g., can take any value in shown range)

Digital

- We often digitize analog signal
- Digitize? = make both x and y axes discrete.
discontinuous in time (e.g., values taken only at fixed times but not in-
between)

"discontinuous" in amplitude (e.g., can not take values between 3 and 4 , like 3.5 etc.)

3.Does the signal have a repeating pattern?

"Periodic"

Vs.
"Aperiodic"

Periodic Signal's Time Period \& Frequency

(a)

(b)
$T_{0}=$ time period $=$ length of the minimum repeating pattern.
$f_{0}=\frac{1}{T_{0}}$ = fundamental frequency

$$
x(t)=x\left(t+T_{0}\right) \quad \text { for all } t
$$

Figure 1.13 Generation of a periodic signal by periodic extension of its segment of one-period duration.

Periodic Signal's Time Period \& Frequency

(a)

(b)
$x(t)=x\left(t+T_{0}\right) \quad$ for all t
e.g., if $T_{0}=6$, then

$$
\begin{aligned}
x(0) & =x(0+6) \\
x(1) & =x(1+6) \\
x(-1) & =x(-1+6)
\end{aligned}
$$

Figure 1.13 Generation of a periodic signal by periodic extension of its segment of one-period duration.

Periodic Signal : Area Under One Period

(a)

(b)

$$
\int_{a}^{a+T_{0}} x(t) d t=\int_{b}^{b+T_{0}} x(t) d t
$$

Area under one whole period of a periodic signal is always the same no matter where you start!!

Figure 1.13 Generation of a periodic signal by periodic extension of its segment of one-period duration.

3. Are the Signal Values/Parameters Random?

"Deterministic"

Vs.
"Random"

3. Are the Signal Values/Parameters Random?

"Deterministic"

$$
x(t)=\sin (2 \pi f t) \text { with } f=1 \mathrm{kHz}
$$

3. Are the Signal Values/Parameters Random?

"Random"
$x(t)=\sin (2 \pi f t)$

Value of f to be decided by tossing a coin

$$
f= \begin{cases}1, & \text { Heads } \\ 2, & \text { Tails }\end{cases}
$$

4. Does the signal have finite energy or finite Power?

- What are energy and power of a signal?
- Why are they needed?

Measures are important...

Height, Age, GDP, Stock Index...

How can we measure a signal?

We often find it useful to look at just one value that gives the overall effect of a signal.

For example, in place of looking at your semester-wise GPA, employer may look at your CGPA.

Two Common Measures of a Signal: Energy \& Power

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

Signal Energy is the area under the absolute square of the signal.

Signal Energy

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

(a) Sine wave

(b) Sine-squared wave

Signal Energy: why don't we just use $x(t)$?

Signal Energy: why don't we just use $x(t)$?

For many signals, area under the signal curve will turn out to be zero. So not a good way of measuring signal.
$\int_{-\infty}^{\infty} x(t) d x=0$

Energy Signal = A signal that has finite energy

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t \neq \infty
$$

Energy Signal = A signal that has finite energy

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t \neq \infty
$$

(a)
(b)

Which one has finite energy?

Many theoretical signals do not have a finite energy...

In that case it is more useful to measure their average energy per unit time (called "Power")

Many theoretical signals do not have a finite energy...

In that case it is more useful to measure their average energy per unit time (called "Power")

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

Power Signal = A signal whose power is neither infinite nor zero.

$$
\begin{aligned}
& P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t \neq \infty \\
& \text { and } \\
& P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t \neq 0
\end{aligned}
$$

Energy \& Power - Some interesting facts...

- There are signals that are neither energy signals nor power signals
- An energy signal can never be a power signal
- A power signal can never be an energy signal
- All practical (real-life) signals are energy signals
- Periodic signals are often power signals

For a periodic signal the power formula can be simplified to:

$$
P_{x}=\frac{1}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2}|x(t)|^{2} d t
$$

i.e., integrate over one period and divide by the period $\left(T_{0}\right)$.

RMS - root-mean-squared value

$r m s=\sqrt{P_{x}}$

Examples

First we note that

- The signal is infinitely long, and not decaying
- It is periodic with period $T_{0}=2$
- Its period from -1 to 1 can be modeled as $x(t)=t$

$$
\begin{aligned}
& E_{x}=\infty \\
& P_{x}=\frac{1}{2} \int_{-1}^{1}|x(t)|^{2} d t=\frac{1}{2} \int_{-1}^{1} t^{2} d t=\frac{1}{3} \\
& r m s=\sqrt{P_{x}}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Since power is finite and non-zero, we conclude that this is a Power Signal.

First we note that

- The signal is infinitely long, but asymptotically decaying
- It is not periodic
- It can be modeled as
- $x(t)=\left\{\begin{array}{l}2,-1 \leq t \leq 0 \\ 2 e^{-t / 2}, \quad t \geq 0\end{array}\right.$

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-1}^{0}(2)^{2} d t+\int_{0}^{\infty} 4 e^{-t} d t=4+4=8
$$

- Since energy is finite, this is an Energy Signal
- Since energy signals cannot be power signals, this is not a power signal.

Show that $\cos \left(\omega_{0} t\right)$ is periodic, with period $T_{0}=\frac{2 \pi}{\omega_{0}}$

For periodicity, we must have (for all t):

$$
\begin{aligned}
& \cos \left(\omega_{0} t\right)=\cos \left(\omega_{0}\left(t+T_{0}\right)\right) \\
& R H S=\cos \left(\omega_{0}\left(t+\frac{2 \pi}{\omega_{0}}\right)\right)=\cos \left(\omega_{0} t+2 \pi\right)=\cos \left(\omega_{0} t\right)=L H S
\end{aligned}
$$

$$
x(t)=x\left(t+T_{0}\right) \quad \text { for all } t
$$

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Signal Basics II

Operations

Messing with signals

Models

Common signals

Examples

Some practice problems

Systems often alter signals. It is good to know some of these changes...

1. Time-Shifting

Left-shifted (advanced), i.e. occurs earlier than the original.

1. Time-Shifting: How to write mathematically?

1. Time-Shifting: How to write mathematically?

$$
\begin{gathered}
x(2)=a, x(3)=b, x(4)=c \\
x_{r}(4)=a, x_{r}(5)=b, x_{r}(6)=c \\
\\
x_{r}(4)=x(2)=a \\
x_{r}(5)=x(3)=b \\
x_{r}(6)=x(4)=c \\
x_{r}(t)=x(t-2)
\end{gathered}
$$

In general, for a rightshift of T units, we can write the new signal as

$$
x(t-T)
$$

1. Time-Shifting: How to write mathematically?

1. Time-Shifting: How to write mathematically?

$$
x(t-T) \quad \text { Assuming } T \geq 0
$$

Delayed or Advanced? Easy trick to remember:

$$
\begin{array}{cc}
\text { Put } t=0 & x_{S}(t)=x(t-T) \\
& x_{S}(0)=x(-T)
\end{array}
$$

So, whatever happens at 0
now, originally happened at $-T$, which means we are now
delayed!!

1. Time-Shifting: How to write mathematically?

$$
x(t-T) \quad \text { Assuming } T \geq 0
$$

Delayed or Advanced? Easy trick to remember:

$$
\begin{aligned}
\text { Put } t=0 & x_{s}(t)=x(t-T) \\
& x_{s}(0)=x(-T)
\end{aligned}
$$

So, whatever happens at 0 now, originally happened at $-T$, which means we are now delayed!!

[^0]
1. Time-Shifting: How to write mathematically?

$$
x(t+T)
$$

Delayed or Advanced? Easy trick to remember:

$$
\begin{array}{rc}
\text { Put } t=0 & x_{s h}(t)=x(t+T) \\
& x_{s h}(0)=x(T)
\end{array}
$$

So, whatever happens at 0 now, originally happened at T, which means we are now advanced!!

1. Time-Shifting: Example

$$
x(t)= \begin{cases}e^{-2 t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

Q. Write the one-second delayed version of this signal

1. Time-Shifting: Example

$$
x(t)= \begin{cases}e^{-2 t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

Q. Write the one-second delayed version of this signal

Step $1 \quad x_{d}(t)=x(t-1)$

1. Time-Shifting: Example

$$
x(t)= \begin{cases}e^{-2 t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

Q. Write the one-second delayed version of this signal

Step $1 \quad x_{d}(t)=x(t-1)$

Step 2 $x(t-1)=\left\{\begin{array}{lll}e^{-2(t-1)} & t-1 \geq 0 & \text { or } t \geq 1 \\ 0 & t-1<0 & \text { or } t<1\end{array}\right.$

1. Time-Shifting: Example (plotting)

$$
x(t)= \begin{cases}e^{-2 t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

(a)

(b)

2. Time-Scaling

2. Time-Scaling: How to write mathematically?

2. Time-Scaling: How to write mathematically?

2. Time-Scaling: How to write mathematically?

In general, for a time-scaling (expansion) by a factor $a>1$, we can write the expanded signal as

$$
x(t / a)
$$

And for a time-scaling (compression) by a factor $a>1$, we can write the compressed signal as

$$
x(a t)
$$

2. Time-Scaling: Example

$$
x(t)= \begin{cases}2 & -1.5 \leq t<0 \\ 2 e^{-t / 2} & 0 \leq t<3 \\ 0 & \text { otherwise }\end{cases}
$$

Q. Write a compressed version of the signal, with compression factor $a=3$.

Step $1 \quad x_{c}(t)=x(3 t)$

Step $2 x(3 t)= \begin{cases}2 & -1.5 \leq 3 t<0 \quad \text { or } \quad-0.5 \leq t<0 \\ 2 e^{-3 t / 2} & 0 \leq 3 t<3 \quad \text { or } 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}$

2. Time-Scaling: Example (plotting)

(a)

$-1.5 \leq t<0$
$0 \leq t<3$
otherwise

(b)

$$
x(3 t)= \begin{cases}2 & -1.5 \leq 3 t<0 \quad \text { or } \quad-0.5 \leq t<0 \\ 2 e^{-3 t / 2} & 0 \leq 3 t<3 \quad \text { or } \quad 0 \leq t<1 \\ 0 & \text { otherwise }\end{cases}
$$

3. Time-Reversal

3. Time-Reversal: How to write mathematically?

3. Time-Reversal: How to write mathematically?

3. Time-Reversal: Example

$$
x(t)= \begin{cases}e^{t / 2} & -1 \geq t>-5 \\ 0 & \text { otherwise }\end{cases}
$$

Q. Write the time-reversed version of the given signal.

3. Time-Reversal: Example

$$
x(t)= \begin{cases}e^{t / 2} & -1 \geq t>-5 \\ 0 & \text { otherwise }\end{cases}
$$

Q. Write the time-reversed version of the given signal.

$$
\text { Step } 1 \quad x_{f}(t)=x(-t)
$$

3. Time-Reversal: Example

$$
x(t)= \begin{cases}e^{t / 2} & -1 \geq t>-5 \\ 0 & \text { otherwise }\end{cases}
$$

Q. Write the time-reversed version of the given signal.

Step $1 \quad x_{f}(t)=x(-t)$

Step $2 x(-t)= \begin{cases}e^{-t / 2} & -1 \geq-t>-5 \quad \text { or } \quad 1 \leq t<5 \\ 0 & \text { otherwise }\end{cases}$

3. Time-Reversal: Example (plotting)

It is good to be intimately familiar with some signals that show up again and again and again and...

1.1 Unit Step

1.1 Unit Step: Graph \& Equation

$$
u(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Q. How can we limit a signal so it doesn't start before $t=0$?

Answer: multiply it with unit step!!

1.2. Multiplication with a Unit Step

1.2 Multiplication with a Unit Step

1.2 Multiplication with a Unit Step

1.2 Multiplication with a Unit Step

1.3 Writing a Piece-Wise Function in terms of Unit Step

$$
x(t)= \begin{cases}e^{-a t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

$$
x(t)=e^{-a t} u(t)
$$

1.4 Time-Shifting a Unit Step

$$
u(t-T)= \begin{cases}1, & t-T \geq 0 \\ 0, & t-T<0\end{cases}
$$

$$
u(t-T)= \begin{cases}1, & t \geq T \\ 0, & t<T\end{cases}
$$

1.4 Time-Shifting a Unit Step

$$
u(t-T)= \begin{cases}1, & t-T \geq 0 \\ 0, & t-T<0\end{cases}
$$

$$
u(t-T)= \begin{cases}1, & t \geq T \\ 0, & t<T\end{cases}
$$

1.5 Making off-on-off (rectangular pulse) with Unit Step

$$
\begin{aligned}
& x(t)=u(t-2)-u(t-4) \\
& u(t-2)= \begin{cases}1, & t \geq 2 \\
0, & t<2\end{cases}
\end{aligned}
$$

1.5 Making off-on-off (rectangular pulse) with Unit Step

$$
\begin{aligned}
u(t-2) & = \begin{cases}1, & t \geq 2 \\
0, & t<2\end{cases} \\
-u(t-4) & =\left\{\begin{array}{cc}
-1, & t \geq 4 \\
0, & t<4
\end{array}\right.
\end{aligned}
$$

$$
x(t)=u(t-2)-u(t-4)=\left\{\begin{array}{lr}
0, & t<2 \\
1+0, & 2 \leq t<4 \\
1-1, & t \geq 4
\end{array}\right.
$$

2.1 Unit Impulse Function

2.1 Time-Shifting a Unit Impulse

$$
\delta(t-T)=0 \quad t-T \neq 0
$$

$$
\delta(t-T)=0 \quad t \neq T
$$

2.2 Multiplying a Function with Unit Impulse

$$
\phi(t) \delta(t-T)=\phi(T) \delta(t-T)
$$

[^1]
2.3 Sampling Property of Unit Impulse

$$
\int_{-\infty}^{\infty} \phi(t) \delta(t-T) d t=\phi(T) \int_{-\infty}^{\infty} \delta(t) d t=\phi(T)
$$

So we get the value/sample of the function $\phi(t)$ at T.

2.4 Relation Between Unit Step \& Unit Impulse

$$
\begin{gathered}
\frac{d u(t)}{d t}=\delta(t) \\
\int_{-\infty}^{t} \delta(\tau) d \tau=u(t)
\end{gathered}
$$

2.5 Examples

Show that $\left(t^{3}+3\right) \delta(t)=3 \delta(t)$

Let $\phi(t)=t^{3}+3$, then using: $\phi(t) \delta(t-T)=\phi(T) \delta(t-T)$
For us $T=0$, which gives $\phi(t) \delta(t)=\phi(0) \delta(t)$

$$
\left(t^{3}+3\right) \delta(t)=\left(0^{3}+3\right) \delta(t)=3 \delta(t)
$$

2.6 Examples

Show that

$$
\text { (a) } \int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=1
$$

$$
\begin{array}{r}
\int_{-\infty}^{\infty} \phi(t) \delta(t-T) d t=\phi(T) \int_{-\infty}^{\infty} \delta(t) d t=\phi(T) \\
\phi(0)=e^{-j \omega \times 0}=1
\end{array}
$$

$$
\text { Use this, with } \phi(t)=e^{-j \omega t} \text { and } T=0
$$

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Signal Basics III

Complex
Numbers
Quick Revision

Models
Complex Exponential

Examples

Some practice problems

Plotting a Complex Number

Plotting a Complex Number

Plotting a Complex Number

Plotting a Complex Number

Q. What is the length of z ?

A. Modulus of z, i.e., $|z|$

$$
\begin{gathered}
z^{2}=a^{2}+b^{2} \\
r=|z|=\sqrt{a^{2}+b^{2}}
\end{gathered}
$$

Q. What is the angle of z ?

Q. Can we write a and b in terms of r and θ ?

Q. Can we write z in terms of r and θ ?

Q. Can we use Euler's identity to make z look nicer?

Q. What happens if I change the sign of j ?
A. You get a flipped version of z that we call conjugate of z

$$
\begin{aligned}
& z^{*}=a-j b \\
& z^{*}=r e^{-j \theta}
\end{aligned}
$$

Summary

Cartesian form	$z=a+j b$
Polar form	$z=\|z\| e^{j \theta}=r e^{j \theta}$

Cartesian
to Polar

\theta=\tan ^{-1} \frac{b}{a}\end{array}\right.\)
Polar to $a=r \cos \theta$
Cartesian
$b=r \sin \theta$

Some Interesting Results

$$
\begin{aligned}
& \left(z^{*}\right)^{*}=z \\
& z z^{*}=|z|^{2} \\
& \left|e^{j \theta}\right|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1 \\
& e^{j 2 \pi n}=1 \text { (} \mathrm{n} \text { = integer) }
\end{aligned}
$$

Example

Using both polar and Cartesian forms, determine $z_{1} z_{2}$ and z_{1} / z_{2} for the numbers

$$
z_{1}=3+j 4=5 e^{j 53.1^{\circ}} \quad \text { and } \quad z_{2}=2+j 3=\sqrt{13} e^{j 56.3^{\circ}}
$$

Multiplication: Cartesian Form

$$
z_{1} z_{2}=(3+j 4)(2+j 3)=(6-12)+j(8+9)=-6+j 17
$$

Multiplication: Polar Form

$$
z_{1} z_{2}=\left(5 e^{j 53.1^{\circ}}\right)\left(\sqrt{13} e^{j 56.3^{\circ}}\right)=5 \sqrt{13} e^{j 109.4^{\circ}}
$$

Division: Cartesian Form

$$
\begin{gathered}
\frac{z_{1}}{z_{2}}=\frac{3+j 4}{2+j 3} \\
\frac{z_{1}}{z_{2}}=\frac{(3+j 4)(2-j 3)}{(2+j 3)(2-j 3)}=\frac{18-j 1}{2^{2}+3^{2}}=\frac{18-j 1}{13}=\frac{18}{13}-j \frac{1}{13}
\end{gathered}
$$

Division: Polar Form

$$
\frac{z_{1}}{z_{2}}=\frac{5 e^{j 53.1^{\circ}}}{\sqrt{13} e^{j 56.3^{\circ}}}=\frac{5}{\sqrt{13}} e^{j\left(53.1^{\circ}-56.3^{\circ}\right)}=\frac{5}{\sqrt{13}} e^{-j 3.2^{\circ}}
$$

Example $\quad z_{1}=2 e^{j \pi / 4}$ and $z_{2}=8 e^{j \pi / 3}$

(a) $2 z_{1}-z_{2}$

$$
\begin{aligned}
& z_{1}=2 e^{j \pi / 4}=2\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)=\sqrt{2}+j \sqrt{2} \\
& z_{2}=8 e^{j \pi / 3}=8\left(\cos \frac{\pi}{3}+j \sin \frac{\pi}{3}\right)=4+j 4 \sqrt{3} \\
& 2 z_{1}-z_{2}=2(\sqrt{2}+j \sqrt{2})-(4+j 4 \sqrt{3})=(2 \sqrt{2}-4)+j(2 \sqrt{2}-4 \sqrt{3})=-1.17-j 4.1
\end{aligned}
$$

Example $\quad z_{1}=2 e^{j \pi / 4}$ and $z_{2}=8 e^{j \pi / 3}$

(c) z_{1} / z_{2}^{2}

$$
\frac{z_{1}}{z_{2}^{2}}=\frac{2 e^{j \pi / 4}}{\left(8 e^{j \pi / 3}\right)^{2}}=\frac{2 e^{j \pi / 4}}{64 e^{j 2 \pi / 3}}=\frac{1}{32} e^{j(\pi / 4-2 \pi / 3)}=\frac{1}{32} e^{-j(5 \pi / 12)}
$$

A Sine and a Cosine Walk Into an Imaginary Bar...

The Complex Sinusoid - $e^{j \omega t}$

$\cos (\omega t)$

$\sin (\omega t)$

The Complex Sinusoid - $e^{j \omega t}$

The Complex Sinusoid $-e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$

The Complex Exponential - $e^{s t}$

$$
e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}
$$

The Complex Exponential: $e^{s t}=e^{\sigma t} e^{j \omega t}$
$\sigma=0$

$$
\sigma<0
$$

Example

Show that the complex exponential signal

$$
x(t)=e^{j \omega_{0} t}
$$

is periodic and that its fundamental period is $2 \pi / \omega_{0}$.

$x(t)$ will be periodic if $\quad e^{j \omega_{0}(t+T)}=e^{j \omega_{0} t}$

$$
e^{j \omega_{0}(t+T)}=e^{j \omega_{0} t} e^{j \omega_{0} T} \quad \square \quad e^{j \omega_{0} T}=1
$$

If $\omega_{0}=0$, then $x(t)=1$, which is periodic for any value of T.

$$
\text { If } \omega_{0} \neq 0 \quad \omega_{0} T=m 2 \pi \quad \text { or } \quad T=m \frac{2 \pi}{\omega_{0}} \quad m=\text { positive integer }
$$

Smallest value of T occurs at $m=1$, and we call it the fundamental time-period $T_{0}=\frac{2 \pi}{\omega_{0}}$

Even vs Odd Signals

(a)

(b)

$$
x_{e}(t)=x_{e}(-t)
$$

Even function - symmetric about the vertical axis.

Odd function - anti-symmetric about the vertical axis.

Products of Even and Odd Functions

even function \times odd function $=$ odd function
odd function \times odd function $=$ even function
even function \times even function $=$ even function

Products of Even and Odd Functions

Let $x(t)=x_{1}(t) x_{2}(t)$. If $x_{1}(t)$ and $x_{2}(t)$ are both even, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=x_{1}(t) x_{2}(t)=x(t)
$$

and $x(t)$ is even. If $x_{1}(t)$ and $x_{2}(t)$ are both odd, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=-x_{1}(t)\left[-x_{2}(t)\right]=x_{1}(t) x_{2}(t)=x(t)
$$

and $x(t)$ is even. If $x_{1}(t)$ is even and $x_{2}(t)$ is odd, then

$$
x(-t)=x_{1}(-t) x_{2}(-t)=x_{1}(t)\left[-x_{2}(t)\right]=-x_{1}(t) x_{2}(t)=-x(t)
$$

Integrals of Even and Odd Functions

(a)

(b)

$$
\int_{-a}^{a} x_{e}(t) d t=2 \int_{0}^{a} x_{e}(t) d t
$$

$$
\int_{-a}^{a} x_{o}(t) d t=0
$$

Writing a signal as sum of Even and Odd

$$
x(t)=\underbrace{\frac{1}{2}[x(t)+x(-t)]}_{\text {even }}+\underbrace{\frac{1}{2}[x(t)-x(-t)]}_{\text {odd }}
$$

Examples

Find and sketch the even and odd components of $x(t)=e^{-a t} u(t)$.

$$
\begin{aligned}
& x(t)=\underbrace{\frac{1}{2}[x(t)+x(-t)]}_{\text {even }}+\underbrace{\frac{1}{2}[x(t)-x(-t)]}_{\text {odd }} \\
& x_{e}(t)=\frac{1}{2}\left[e^{-a t} u(t)+e^{a t} u(-t)\right] \\
& x_{o}(t)=\frac{1}{2}\left[e^{-a t} u(t)-e^{a t} u(-t)\right]
\end{aligned}
$$

Find the even and odd components of $e^{j t}$.

$$
\begin{aligned}
& x_{e}(t)=\frac{1}{2}\left[e^{j t}+e^{-j t}\right]=\cos t \\
& x_{o}(t)=\frac{1}{2}\left[e^{j t}-e^{-j t}\right]=j \sin t
\end{aligned}
$$

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Spectra - the Ghosts in Your Signal

Sonar

ES 332 - Signals and Systems / Dr. Naveed R. Butt @ GIKI - FES

Q. Can we write signals as sums of periodic functions (frequencies)?

This is exactly what Fourier Transform does - it tries to write every signal as a sum of sinusoids.
Q. Can we write signals as sums of periodic functions (frequencies)?

Baking a Fourier Cake

- Given: Signal shape (time-domain)
- Ingredients: Sinusoids of different frequencies
- Choose: How much of the each ingredient (sinusoid) to use?

- In Fourier Transform, we want to look at signals in terms of a fixed set of ingredients
- Ingredients : Sinusoids of different frequencies

- In Fourier Transform, we want to look at signals in terms of a fixed set of ingredients
- Ingredients : Sinusoids of different frequencies

- How is this shown after Fourier transform?

- We mostly skip the middle steps

Fourier

Transform = ?

Some Fourier Transforms (Visual)

As frequencies increase, the FT peaks move outwards

$f(x)$

1ucasvb.tumblr.com
Q. Is it always possible to write signals as sums of sinusoids?

Q. Is it always possible to write signals as sums of sinusoids?

- No. There are theoretical signals that do not have a Fourier Transform (e.g., $e^{-a t} u(t)$ with $a<0$).
- However, all physically realizable signals have Fourier Transforms.
Q. Why Use Periodic Functions (frequencies)?

A large number of physical phenomena have underlying periodicities (frequencies)...

Voice Recognition

Communication systems are based on the frequencies of tunable antennas

Chemicals may be identified by the unique resonant frequencies of their nuclei or molecules

Q. Why Sinusoids?

Why not other types of periodic functions?

Q. Why Sinusoids?

- Smooth (analytically simpler, e.g., differentiable, integrable...)
- Nicely reflect behavior of natural phenomena (to-and-fro motions)

Q. Why Sinusoids?

Longitudinal Wave

In fact, Fourier Transform does not use just sinusoids, it uses complex sinusoids!!!

Why?

- More general than real sinusoids
- More elegant analytically and in calculations

And what exactly was a complex sinusoid?

A Sine and a Cosine Walk Into an Imaginary Bar...

The Complex Sinusoid - $e^{j \omega t}$

$\cos (\omega t)$

$\sin (\omega t)$

The Complex Sinusoid - $e^{j \omega t}$

The Complex Sinusoid $-e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$

Mathematically Speaking...

$$
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega
$$

Mathematically Speaking...

Hi, Dr. Elizabeth?
Yeah, wh... I accidentally took the Fourier transform of m_{y} cat...

Questions?? Thoughts??

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

Q. Can we write signals as sums of periodic functions (frequencies)?

Baking a Fourier Cake

- Given: Signal shape (time-domain)
- Ingredients: Sinusoids of different frequencies
- Choose: How much of the each ingredient (sinusoid) to use?

- In Fourier Transform, we want to look at signals in terms of a fixed set of ingredients
- Ingredients : Sinusoids of different frequencies

- In Fourier Transform, we want to look at signals in terms of a fixed set of ingredients
- Ingredients : Sinusoids of different frequencies

- How is this shown after Fourier transform?

- We mostly skip the middle steps

FT - Pairs and Rules-of-Thumb

Some Fourier Transforms (Visual)

Not changing
(frequency $=0$)

$$
\sin (\omega t)=\frac{1}{2 j}\left(\mathrm{e}^{j \omega t}-\mathrm{e}^{-j \omega t}\right)
$$

Rule1: As frequency increases, the FT peaks move outwards

Rule 2: Damping causes spread

Rule 3: Sharp changes (edges) require a lot of frequencies

... and an extremely sharp change (impulse) requires ALL the frequencies!!

[^2]

Rule 4: Periodic functions have discrete spectra.

Rule 5: Multiple effects can be combined.

Rule 6: Duality

Questions?? Thoughts??

lee 6 System Basics

- we have previously looked at signals and several of their types (classifications)
-signal: collection of data
: carries some information ($\begin{gathered}\text { even } \\ \text { noise }\end{gathered}$)
- Today we bock at systems
why? <all around os extract we often need to modify info in signals examples $\underset{\substack{\text { car } \\ \text { car } \\ \text { commit } \\ \text { com }}}{\text { n }}$

-So many systems!
- How can me know response?
- Some general way of model in it? ((independent of
- Perhaps we can study some properties?
\rightarrow Probe a block hor?
Q. \rightarrow what happens if I scale the input?

\rightarrow if output also scaled by same factor $J \longleftarrow$ Momogenous
Q. what happens if I and signals?

\rightarrow if output also com of original outputs $] \leftarrow$ Additive
\rightarrow we can combine the above two in one form

\rightarrow if yes, then system allows Superposition.
\rightarrow And we call such a system "Linear".

$$
\rightarrow \text { hype fields }<\text { linear }
$$

Q.

\rightarrow if output is also shiftal by same amount

$$
) \leftarrow \text { Time Invariant }
$$

\rightarrow Myge classenfic atom $<$ TI
\rightarrow Huge class: LT I
$\xrightarrow{\text { Q. Does System output depend on lost or future }}$ inputs? (or orly on current input?)

\rightarrow output at time t depends only on $x(t)$ (and not on $x(t \pm t)$-te.) then \rightarrow Memoryless $\left(\begin{array}{l}\text { aleird Irstantaners.). } \\ \text { called }\end{array}\right.$
\rightarrow otherwise: Dynamic (or Memory system)
 Memonglees $x(t) \int_{y(t)}=4 x(t)+x^{2}(t+1) t$ dynamic
Q. Does output depend an ty on current + post in puts?
\rightarrow if jas: Causal (all read $\begin{aligned} & \text { systems }\end{aligned}$ cannot hove output before ernupiply

\rightarrow why study non-carsal?
-suppuse signal is recorded!
\rightarrow then futhe and paet values an araliun

$$
\begin{aligned}
& {\left[x\left(t_{1}\right) x\left(t_{2}\right) x\left(t_{3}\right) x\left(t_{4}\right) x\left(t_{5}\right)\right]} \\
& y\left(t_{1}\right)=\frac{x\left(t_{1}\right)+x\left(t_{2}\right)+x\left(t_{3}\right)+x\left(t_{4}\right)+x\left(t_{5}\right)}{5}
\end{aligned}
$$

\rightarrow or indeperdont vaniable can be non-time

$$
\frac{x\left(l_{1}\right) \times\left(l_{2}\right) x\left(l_{3}\right) x\left(l_{4}\right) \text { Tempentin }}{x \cdot 1}
$$

$$
y=\frac{x\left(l_{1}\right)+x\left(l_{2}\right)}{2}
$$

$\xrightarrow{\text { Q. }}$
Do Bönded irputs give bourded artput?

\rightarrow if no: system unstable (BiBO-unstable)
\rightarrow if yes: systam stable (BiBo-stable)

$$
\begin{aligned}
& |x(k)| \leq M_{x}<\infty \\
& (2(t)|=| x(t))^{2} \leq M_{x}^{2}
\end{aligned}
$$

$$
\text { cig sit } x(t)=u(t)
$$

Q. \longrightarrow Are inputs outputs Continuous or discrete?
$C T$ system \rightarrow beth input/ontent CT
DT syst \rightarrow BT
C/D system \rightarrow input: CT, outspent DT
o/C Syst \longrightarrow
Q. Are inputs lou tents
$\xrightarrow{\text { Q. Analog or digital? }}$

Q.
can we recover the input exactly from the output? (wither knowing input of correse) if yes \rightarrow Invertible.

rectifier
 tell exactly.
\rightarrow SISO, MIMO ete.
\rightarrow Lirear system response breakdown

$$
\begin{aligned}
& \text { Total }=\begin{array}{l}
\text { 7ero-input } \\
\text { resp }
\end{array}+\begin{array}{l}
\text { 7ero } \\
\text { state respare }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Zeroinpt } \\
& \text { resp }
\end{aligned} \underset{\text { tero-state }}{\text { response }}
$$

Lee7 Practice Problems (Sigral \$ system basics).
(1)

Given $x(f)$
Idutity

(2) Give $x(t)= \begin{cases}1 & 0 \leq t \leq 1 \\ 0 & \text { other }\end{cases}$

Find $x(t)$ delaged by 2 , advaread by 2 , and reflected
\rightarrow lelaged by 2 is $x(t-2)$

$$
x(t-2)= \begin{cases}1 & 0 \leq t-2 \leq 1 \\ 0 & \text { or }\end{cases}
$$

\rightarrow advaraed by 2 is $x(t+2)$

$$
x(t+2)=\left\{\begin{array}{ll}
1 & 0 \leq t+2 \leq 1 \quad \text { or } \\
0 & 0 / w
\end{array} \quad-2 \leq t \leq-1\right.
$$

\rightarrow reflected is $x(-t)$

$$
x(-t)=\left\{\begin{array}{ll}
1 & 0 \leq-t \leq 1 \\
0 & 0 / w
\end{array} \quad \text { or }-1 \leq t \leq 0\right.
$$

(3) Tables can also be helpful for mixture of operations! (2)

Given $x(t)=\left\{\begin{array}{ll}1 & 0 \leqslant t \leq 1 \\ 0 & \text { lw }\end{array}\right.$ find $x(-t+2)$

(4) If T_{0} is a period of a function $x(f)$ then $\begin{aligned} & \text { used } 1 \\ & \text { result }\end{aligned}$ so is $T_{k}=k T_{0}$ for k integer. Prove it. result?

Given is: $x\left(t+T_{0}\right)=x(t)$ for all t
let $t_{1}=t+T_{0}$, then by periodicity by)

$$
\begin{aligned}
& x\left(t_{1}+T_{0}\right)=x\left(t_{1}\right) \\
& x\left(t+T_{0}+T_{0}\right)=x\left(t+T_{0}\right)=x(t)
\end{aligned}
$$

$\Rightarrow x\left(t+2 T_{0}\right)=x(t) \Rightarrow$ so $2 T_{0}$ is also a period let $t_{2}=t+2 T$ and repeat!

Problem
(4) Prove that the fundamental period of $\cos (\omega t)$ is $T_{0}=2 \pi / \omega$. $-\infty \leq t \leq \infty$
\rightarrow let $x(t)=\cos (\omega t)=$ narzeno
\rightarrow Let us assume there is a L_{0} such that

$$
\begin{aligned}
& x\left(t+T_{0}\right)=x(t) \quad \forall t \\
& \Rightarrow \quad \cos \left(\omega\left(t+T_{0}\right)\right)=\cos (\omega t) \\
& \cos \left(\omega t+\omega T_{0}\right)=\cos (\omega t)
\end{aligned}
$$

How is that porsible with von-zoro T_{0} ?
\rightarrow Trigonometry comes to out help!

$$
\cos \left(\theta_{t}+2 \pi\right)=\cos \left(\theta_{t}\right)
$$

(*) holds if

$$
\begin{aligned}
\omega T_{0}=2 \pi & \Rightarrow T_{0}=2 \pi / \omega \\
& \Rightarrow \omega=\frac{2 \pi}{T_{0}}=2 \pi f_{0}
\end{aligned}
$$

\rightarrow Form vow on we will simply say that fundamental penud of $\cos (\omega t)$ san be calculated form $\omega=\frac{2 \pi}{T_{0}}$. E. ge $\cos (2 t) \Rightarrow 2=\frac{2 \pi}{T_{0}}$ $\Rightarrow T_{0}=\pi$
\rightarrow Above also holds for $\cos (\omega t+\theta), \sin (\omega t), \sin (\omega t+\theta)$, and $e^{j \omega t}$.

$$
\rightarrow e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

Problem(5) Find energy \& Pover of

$$
\begin{gathered}
z(t)= \begin{cases}1 & 0 \leq t \leq 10 \\
0 & 0 \text { then }\end{cases} \\
\rightarrow E_{z}=\int_{-\infty}^{\infty}|z(t)|^{2} d t=\int_{0}^{10} 1^{2} d t=\int_{0}^{10} d t=\left.t\right|_{0} ^{10}=10-0=10 \\
\rightarrow P_{z}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T \rightarrow \infty}^{T / 2}|z(t)|^{2} d t \\
\text { as } T \rightarrow \infty
\end{gathered}
$$

\rightarrow Dividing a finite value with infinite value

$$
\Rightarrow P_{z}=0
$$

Problem (6) charateng $x(t)=\sqrt{2} \cos (\pi t / 2+\pi / 4)-\cos t \leq \infty$
\rightarrow Anbolog? Yes, \rightarrow Determmiste2) Yes (no rundom paramte).
\rightarrow Perindic? Yes, with F.period giva by $\omega=\frac{2 \pi}{T_{0}} \Rightarrow \frac{\pi}{2}=\frac{2 \pi}{T_{0}}$

$$
\Rightarrow \pi T_{0}=4 \pi \Rightarrow T_{0}=4 \quad\binom{\text { hiut by } t=T_{0} \text { in onjgine }}{\text { ans see it becoms } 2 \pi}
$$

Pubblen(t) even or add ar vera the?
(a) $\cos (t) ?$ even: $x(t)=x(-t)$ odd : $x(t)=-x(-t)$

$$
\cos (-t)=\cos (t) \leftarrow \text { even! } \quad\binom{\text { for trigonomt }}{\cos (\theta)=\cos (-\theta)}
$$

(b) $\sin (t) \geqslant \quad \sin (-\theta)=-\sin (\theta)$

$$
\Rightarrow \sin (t)=-\sin (-t) \leftarrow \text { odd }
$$

(c) $x(t)=-10 t$
check $x(t) \stackrel{?}{=} x(-t) \Rightarrow-10 t \stackrel{?}{=}-10(-t)=10 t \times$ not even check $x(t)=-x(-t) \Rightarrow-10 t \stackrel{?}{=}-(-10(-t))=-10 t \checkmark$ od

Problem (z) Simplify $\left.y(t)=\frac{1}{2} \int_{-\infty}^{\infty} x(\tau)(\delta(\tau-4)+\delta(\tau+\tau))\right) d \tau$
Recall $\int_{-\infty}^{\infty} x(t) \delta(t-\tau) d t=x(\tau) t$ so $\delta(t-\tau)$ picks the of x for $t-\tau=0$

$$
\begin{aligned}
y(t) & =\frac{1}{2} \int_{-\infty}^{\infty} x(z) \delta(z-4) d z+\frac{1}{2} \int_{-\infty}^{\infty} x(z) \delta(z+4) d z \\
& =\frac{1}{2} x(4)+\frac{1}{2} x(-4)
\end{aligned}
$$

Ponblam (8) Charactenge th systan $y(t)=e^{t x(t)}$
(1) Memory less? Yes
(2) Invertile? No

$$
x(t)=\frac{\ln (y(t))}{t}
$$

(3) cavsal? Yes
(4) stable? No
(5) TI? N.O.

$$
\begin{aligned}
& \left.y_{0}(t)\right|_{x\left(t-t_{0}\right)} ^{=} y\left(t-t_{0}\right) \\
& e^{\left(t x\left(t-t_{0}\right)\right)} \stackrel{?}{=} e^{\left(\left(t-t_{0}\right) x\left(t-t_{0}\right)\right)} \times N_{0}
\end{aligned}
$$

(6) liveer? No.

Leer DT signals \& Systems Time Domain
Q. what is a Di system? Input b output DT signal's!

- So let's talk about DT signals a while
- repeat some of previous but focrosily on DT.
$\xrightarrow{t \rightarrow n}$ in ploce of t we shall use notation with n $x(n) \rightarrow n$ discente egg

$$
\begin{array}{l|l}
n=\text { integers } & \text { uniformly } \\
n=\text { even integer } & \text { Spaced } \\
n=0.5 k \text { integers } & \text { nen-unifinily } \\
n=0,0.1,0.5,1,10,100 & \text { spored }
\end{array}
$$

$\xrightarrow{C-D-D-C}$ we often disuetige CT signals for easy processing

$\stackrel{\text { eng }}{\Longrightarrow}$

Energy \& Rower

$$
x(t) \quad E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

$$
P_{x}==\frac{\operatorname{los})}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

$$
x[n] \quad E_{x}=\sum_{n=-\infty}^{\infty}|x[n)|^{2} \quad P_{x}=\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{-N}^{N}|x(n)|^{2}
$$

Shifting

$$
\begin{aligned}
& x_{0}[n]=x[n-M] \quad M^{\text {tree }} \text { integer } \\
& x_{a}[n]=x[n+M] \quad \text { " } \\
& x_{r}[n)=x[-n] \rightarrow \text { Honjomatal flip } \\
& x_{0}[n]=-x[n] \rightarrow \text { vertical flip }
\end{aligned}
$$

Sampling
our way of getting DT from CT!

\rightarrow let's say I went to read the signal offer every T seconds. \rightarrow my readings look like this

$$
\begin{aligned}
& \text { y readings bork like this } \\
& (x(0) \times(T) \times(2 T) x(t=3 T) x(t=5 T) \ldots x(t=\pi)) \\
& \left(x^{t=}\right)
\end{aligned}
$$

\rightarrow for simplicity I will replace with DT notation $+\begin{gathered}\text { Addition in for } \\ \text { of sampliy }\end{gathered}$ of samples (T)

$$
\left.\begin{array}{l}
\rightarrow \text { for simplicity } \\
D^{\top} \rightarrow\left[\begin{array}{llllll}
x[0] & x[1] & x[2] & x[3] & x(n] & \ldots
\end{array} x[n]\right.
\end{array}\right]
$$ version

of $x(t)$ sampling of $x(t)$

68
\rightarrow In general, you can downsample by a foctor M as

$$
x_{d}(n)=x[M n] \quad M \text { integer. }
$$

\rightarrow What if yor wanted to have entra samples in between? sers upsample (expand)

$$
\left.\begin{array}{l}
x[n] \rightarrow\left[\begin{array}{ccccc}
x[0] & x[1] & x[2] & x[3] & x[4]
\end{array}\right] \\
x_{0}[n] \rightarrow\left[\begin{array}{lllll}
x_{0}[0] & 0 & x_{0}[2] & 0 & x_{0}[4]
\end{array} 0\right. \\
x_{0}[6]
\end{array}\right]
$$

for geveral upsampling by factor L we hare

$$
x_{0}(n)= \begin{cases}x[n / L) & n=0, \pm L, \pm 2 L, \ldots \\ 0 & \text { operal upsampling by factar }\end{cases}
$$

ster2 repluce the ingerted Jenos by Interpolations
$\left.\begin{array}{lllll}n=1 & n=2 & n=3 & n=4 & n=5 \cdots \\ \text { e.g } \quad x_{i}(n) \rightarrow\left[\begin{array}{llll}x_{0}(0) & \frac{x_{0}(0)+x_{0}(2)}{2} & x_{0}(2) & \frac{x_{0}(0)+x_{0}(4)}{2}\end{array} x_{n}[4] \cdots\right.\end{array}\right]$
\rightarrow Graphically

Denoting DToperations \rightarrow Addituer

\rightarrow Saling

$$
\begin{aligned}
& \underset{x(n)}{a} \quad \begin{array}{l}
y[n]=a x[n] \\
x(n)=x[n-1]
\end{array}
\end{aligned}
$$

\rightarrow Delay $x(n) D$

Some commor DT Sigral Models

$\rightarrow \operatorname{link} b / w \Omega$ and ω. If a CT sinusoid is samplud every T seconds, we can link the lwo os

$$
\begin{aligned}
& \cos (\omega t) \xrightarrow[\text { rate } T]{\text { sampleat }} \cos \left(\Omega_{n}\right) \quad\left(\begin{array}{c}
\cos (\omega t) \\
\rightarrow \cos (\omega T) \\
\rightarrow \cos (\omega T) \\
\rightarrow \cos (\Omega n)
\end{array}\right)
\end{aligned}
$$

$a>0$ growiy omponemetrly
\rightarrow DT exporential
\rightarrow we had the CT exponectial $e^{\text {at }}$ \rightarrow for DT we have γ^{n}

$$
\begin{aligned}
& \rightarrow D_{\text {elfat }} \quad \delta(n)= \begin{cases} & n=0 \\
0 & n \neq 0\end{cases} \\
& \rightarrow D_{\text {Star }}^{\text {Tonit }} \text { dU }[n]= \begin{cases}1 & n \geqslant 0 \\
0 & n<0\end{cases}
\end{aligned}
$$

Q. Given $n=0,01,12,3 \ldots$
is γ^{n} growing, constant, or decaying?
\rightarrow If γ is real then

\rightarrow Same holds for complex X!

$$
\gamma=a+; b \Rightarrow|\gamma|=\sqrt{a^{2}+y^{2}}
$$

$|\gamma|<1$ Decaying etc.
Q) What does this mean ia complex plain

Inside unit cire \rightarrow decays
out sid unit circle \rightarrow growir on Unit circe \rightarrow verther

Lee 9 Convolution \& 2Ω
Q. How to find the output of an arbitrang system to an arbitrary in put?
Problem So Many types of systems!
So Many signals ! (input candidates)
"O", Perhaps consider first a subclass of Systerns?
(b) Perhaps consider a simpledel that can cover all signals?

In other words \Rightarrow for linear system if $S\left(x_{1}(n)\right)=y_{1}[n]$
and $S^{\prime}\left(x_{2}(n)\right)=y_{2}[n]$ then $S\left(a x_{1}(n)+b x_{2}(n)\right)=b S_{S}\left(x_{2}(n)\right)$

$$
=a y_{1}(r)+b y_{2}(n)
$$

$T I \quad x(n-N)+S$
In other wars: for TI system if $S(x[n))=y[n]$
then

$$
\begin{aligned}
& S(x[n])=y[n] \\
& S(x[n-N])=y[n-\alpha]
\end{aligned}
$$

e.y are these LII?
(i) $S(x(n)]=a \times[n]$
(ii) $S(x(n)]=a x[n]+b$

Cet's see
(iii) $S^{\prime}(x[n)]=a x(n)+b n$

$$
c_{1} x_{1}+c_{2} x_{2}-5
$$

$$
?=\sqrt{x_{1}+\frac{c_{1}}{c_{s}} \rightarrow+c_{2}+}
$$

$\stackrel{?}{=}=C_{1} S\left(x_{1}(n)+C_{2} S\left(x_{2}(n)\right)\right.$

$$
\begin{aligned}
& \text { Lineorty tes,t } S\left[c_{1} x_{1}(n)+c_{2} x_{2}(n)\right)=C_{1} S\left(x_{1}(n)\right)+C_{2} S\left(x_{2}(n)\right) \\
& x[n) \text { 回 } \\
& =c_{1} a x_{1}(n)+c_{2} a x_{2}(n)
\end{aligned}
$$

II tast

$$
\begin{aligned}
& S(x(n-N))=y[n-N) \text { wint } y(n)=a \times[n] \\
& \{x(n-N)=a x(n-N)
\end{aligned}
$$

(ii) $S\left[c_{1} x_{1}(n)+c_{2} x_{2}(n)\right] \stackrel{?}{\downarrow}=c_{1} S\left(x_{1}(n)\right)+c_{2} S\left(x_{2}(n)\right)$

$$
\begin{aligned}
& \text { - II } \int^{\prime}(x(n-N)) \stackrel{!}{=} y(n-N) \rightarrow \text { wth } y(n)=a x(n)+b \\
& a x[n-N]+b=a x[n-N]+b
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& d^{\prime}\left(c_{1} x_{1}(n)+c_{2} x t_{n}\right) \text { not linear (easy to sec) } \\
& \text { early } r(n)^{\prime} \text { ' } n \text { ! } \\
& \text { (cart prove it !.) } \\
& \text { ere } y(n)=a x(n)+b n \\
& a x(n-N)+b n=a x(n-N)+b(n-N)
\end{aligned}
$$

not
TI
$\rightarrow 0^{\prime} k$, so let's stick to LTI for convenience
\rightarrow Now let's fund a generic signal Model.
claim Any DT signal can be written as a
Sum of
Scaled and
Shifted Impulses!

$$
x[n]=\sum_{* k} x[k] \delta[n-k]
$$

\rightarrow Now let's bring these two together!

$$
\begin{aligned}
y[n] & =\sum_{\forall x} x(k) h(n-k) \\
& =x[n] * h[n] \\
& =\text { Convolution }
\end{aligned}
$$

$\xrightarrow{\text { So basically }}$
\rightarrow Convolution gives us the output of an III system to ar arbitrary signal! ($\left.\begin{array}{l}\text { yin reed to know mils th } \\ \text { shad and IR }\end{array}\right)$
\rightarrow So two take aways
convolution \& (Mathematiral operater $\begin{aligned} & \text { helps tind LTI resparice) }\end{aligned}$
$(h(n)) \leftarrow$ can RUlly characterge an LTI system (a) we shall see soon)
\rightarrow both of these need foll attention!
ruefs
\rightarrow convolution propertizes
identits

$$
\begin{aligned}
& x[n] * \delta[n]=x[n] \\
& x_{1}[n] * x_{2}[n]=x_{2}[n] * x_{1}[n] \\
& \Leftrightarrow \quad \sum_{* k} x[k] h(n-k)=\sum_{* k} h[k] *[n-k]
\end{aligned}
$$

Distrisution

$$
x_{1}(n) *\left(x_{2}(n)+x_{3}(n)\right)=\left(x_{1}(n) * x_{2}(n)\right]+\left[x_{1}(n) * x_{3}(n)\right]
$$

Assoeintre

$$
x_{1}(n) *\left(x_{2}(n) * x_{3}(n)\right)=\left(x_{1}(n) * x_{2}(n)\right) * x_{3}(n)
$$

Slufting if $x_{1}(r) * x_{2}(n)=c(n)$

$$
\text { if } x_{1}[r] * x_{2}[n]=c(n)
$$

\rightarrow like Integrals, we have convolution tables. \rightarrow also mostly done on computers.

(1) Matlab $x=\left[\begin{array}{lll}-1 & 0 & 1\end{array}\right], \quad h=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$

$$
y=\operatorname{conv}(x, h) \in \text { command. }
$$

(2) $U(n) *(S(n)+S U(n)) ?$

$$
\underbrace{\substack{\text { pros }}}_{\substack{\text { bis } \\ \text { mine }}} \rightarrow(n+n]+5(n+1) u(n)]
$$

(3) By plots \& By tape similar $\xlongequal{\downarrow}\left(\begin{array}{c}\text { same } \\ \text { basic } \\ \text { idea }\end{array}\right)$

$$
x[-k+n]
$$

$$
\begin{aligned}
& y[n]=x[n] * h[n]=\sum_{\forall k} x[k] h[n-k]=\sum_{\forall k} h[k] x[n-k] \\
\Rightarrow & y[0]=\sum_{* x} h[k] x[-k] \leqslant \text { input flipped } \\
\Rightarrow & y[1]=\sum_{* x} h[k] x[-k+1]<\text { flipped \& whiffed }
\end{aligned}
$$

\downarrow aligned at zen.

Steps Flip the input (or If)
Ste 2 Align input $\&$ IR at zeno.
step? Multiply ovelapping cells $\$$ add results
sep shit right \& repeat.

$$
\begin{aligned}
\downarrow \\
\hline 10 / 20 \mid 30 / 40 \\
5 / 10 / 5
\end{aligned} \quad \begin{aligned}
y[J] & =30 \times 5+40 \times 10 \\
& =150+400=5
\end{aligned}
$$

$\frac{\text { Lee } 10}{+ \text { lee II }} \frac{\text { RR }}{\text { II }}$ (TI) $)+\underset{\text { zerpipongent }}{\text { renes }}$
$\xrightarrow{\text { Recall }} I \Omega=$ response of a system to an Impulse
$\xrightarrow{\text { For }}$ LR can fully chavacternge an LT I system!
\rightarrow gives output (through convolution)
\rightarrow can be used to tell if system $<$ causal stable Dynamic

LII out ant
for input $x[n] \notin \Omega \quad h[n]$ output $y[n]=x[n] * h[n]$

$$
=\sum_{\forall k} x[k] h[n-k]
$$

Visualizing th \xlongequal{O} what does $h[n]=\left[\begin{array}{lll}2 & 4 & 8\end{array}\right]$ really mean?
un what is really going on inside the system with $h(n)$ drawn as?
rote can be written

$$
\begin{aligned}
h[n]=2 \delta\{n] & +4 \delta\{n-1] \\
& +8 \delta\{n-2\}
\end{aligned}
$$

$h[n]$
fun

Pick three stud eats, give them a numbs, ask to multiply by'
$2,4,8$ one by one

Note if we send (b) ore time unit after (a) then outputs will start overlapping leading to -convolution"!
Q. What does this IR say?

Using hin] to characterge LI system

Let's write out the output.

$$
\begin{aligned}
& \text { out the output: } \\
& y[n]=x[n] * h[n]=\sum_{\forall k} b x[k] x[n-k] \\
& y[n]=\frac{\varepsilon h(-2)^{(1 n+1)}+\underbrace{h(-1] \times[n+1)+}_{\text {future }} h(0) x[n]+h[1] x[n-1]+h[(2) x(n-2]+\ldots}{\text { Past }}
\end{aligned}
$$

Q. when is a system instantaneous (Memory less)?
O. from equal above what condition should $h[r]$ follow to wale system wemorless?

$$
h[n]=0 \quad n \neq 0
$$

Irstentanere ow Dynamic
Q." "" "Causal? (no dependeree. m future value)

$$
h(n)=0 \quad n<0
$$

Q. what condition should apply to $h[n]$ for B1so stability?
\rightarrow say $x[r]$ is hounded such that $|x(n)| \leq \mu_{x}<\infty$
\rightarrow then

$$
\begin{aligned}
&|y[n]|=\left|\sum_{\forall k} h[k] x(n-k]\right| \\
& \leq \sum_{\forall k}|h(k)||x(n-k)| \\
& \leq \sum_{\forall k} \ln [k] \mid M_{x} \\
&=M_{x} \sum_{\forall k} \ln [k] \mid \\
& \text { con carceloot } \\
& \text { no megatre } \\
& \text { terns. }
\end{aligned}
$$

Q. Studied Matrices? What is an eigenvalue/eigenve for?

$$
A \underline{x}=\lambda \underline{x}]=\lambda[\square
$$

$$
A \underline{x}=\lambda \underline{x} \quad \text { Def }
$$

why so important?
\rightarrow Notice above that huge matrix
e.genvator, A vector that
gris through a mat and comes out the
and same except for some possible scaling.
\rightarrow That scaling is eigenvalue
\rightarrow further: suppose matin A has two eignevecter
\underline{x}_{1} and \underline{x}_{2} with eiganmalus(scalizs) $\hat{\lambda}_{1}, \lambda_{2}$. Then

\rightarrow what if another vector is to be multiplied by A)?

$$
[A][y]=\text { another vector is to }[y]
$$

huge Multiplication? what if we can write \underline{y} in terms of \underline{x}_{1} and \underline{x}_{2} ? Perhaps

$$
\begin{aligned}
& y=a \underline{x}_{1}+b \underline{x}_{2} \\
& \underset{a \underline{x}_{1}+b \underline{x}_{2}}{A} ? \\
& a \underbrace{\left.a \int_{\lambda_{2}}\right]\left[\underline{x}_{1}\right]}_{\lambda_{1} x_{1}}+b \underbrace{\left[\underline{x}^{2}\right]\left[\begin{array}{l}
x_{2}
\end{array}\right.}_{\lambda_{2}}=a \lambda_{1} \underline{x}_{2}+b \lambda_{2} x_{2}
\end{aligned}
$$

\rightarrow So its good to know eigenvectors of a matron \rightarrow Trot like this Systems han eigenfuretions eigenfunction of a system is a function that cones ont of the system unchanged except for some possible scaling.
Q. What are the evgenfuretions of DT LII Systems?

Ans: Complex sinusoids (exponential) are cigenfunctions of DT LTI systems.

Again, why is that usectul?
we can offer write signal in terms of complex sinusoids, e.g., as $\quad x[n]=a e^{j \omega_{1} n}+b e^{j \omega_{2} n} \quad$ (toy $\left.\begin{array}{c}\text { example) }\end{array}\right)$ then

$$
x[n] \text { TUI } a H\left(\omega_{1}\right) e^{j \omega_{1} n}+b H\left(\omega_{2}\right) e^{j \omega_{2} n}
$$

arhat terms are simple scaled
input terms! versions of input terms!

- note, Such rewnting $x[n]=a e^{j \omega_{n} n}+b e^{j \omega_{2} n}+c e^{j \omega_{3} n} \cdots$ we call "Transform". We will see lots of these transforms in this carse! Stay Tuned UII!

Example 1
Given an UI filler with IR
(a) Plot the in $h[n]=\frac{1}{3}(\delta[n]+\delta[n-1]+\delta[n-2])$
(5) Find outran to a general input $x[n$]
(2) Is it memory less?
(d) cavan? (e) stable?
(a)
((

b

$$
\begin{aligned}
& y(n)=x[n] * h[n]=\frac{1}{3}(x[n] * \delta[n] \\
&+x[n] * \delta\{n-1] \\
&+x[n] * \delta[n-2]) \\
&=\frac{1}{3}(x(n)+x[n-1]+x[n-2))
\end{aligned}
$$

(c) For memorgles $h[n]=0 \quad n \neq 0$, which is net the case here (eng $h(1)=h[2]=1 / 3)$
(d) For causal LII $h(n)=0 n<0$, which is the case here!
(d) For Biko stable LII $\sum_{\forall k}|\ln [x]|<\infty$ which is the core here!

Example(1)

$$
h(n)=0.5^{n} u[n]
$$

(a) Dot
(b) Memorlless?
(c) causal?
(d) stalle?

$$
\sum_{n=-\infty}^{\infty}|h[n]|=\sum_{n=0}^{\infty} 0.5^{n}=\frac{1}{1-0.5}=2
$$

Lee 12
(1) Eigenfunotiuns
-Last time we baked about eigenvectors and bases.

$$
A \underline{x}_{1}=\lambda_{1} \underline{x}_{1} \quad, \quad A \underline{x}_{2}=\lambda_{2} \underline{x}_{2}
$$

- \underline{x}_{1} ard \underline{x}_{2} con form bases, so that for any \underline{x} we have

$$
\underline{x}=a_{1} \underline{x}_{1}+a_{2} \underline{x}_{2}
$$

$$
\text { - then } \quad A \underline{x}=a_{1} \lambda_{1} \underline{x}_{+}+a_{2} \lambda_{2} x_{2}
$$

- So all you need to decide if vectors ii) what are the bases furctions (eisenfurctions) (ii) what are the weights a_{1}, a_{2}
(iii) what are the eigenvalues
(2) Complax Sinusoids are ERs of LTI

- what if we could rewrite general inputs $x[n]$ in the bases furetions ac complex sinusoids?

$$
x[n]=a_{1} e^{j \omega_{1} n}+a_{2} e^{j \omega_{2} n}
$$

(3) This is what Z-Transform druse esentially (for DT, for CT Laplaci/Fourier do this)
(1) what ane the basis furetions!
-in general Z can be $A e^{j \phi}$

- Mostly we go for $Z=e^{j \omega}$, with bases furctung Z^{n} formed us
(ii) how to find the weights? $\left(a_{1}, a_{2} \ldots\right)$

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \longleftarrow \begin{aligned}
& \text { Project } x[n] \text { onto } \\
& \text { bases } z^{n}\binom{\text { projection involves }}{\text { conjugation, so }} \\
& \text { Qi } e^{j w} z^{-n}
\end{aligned}
$$

lett say $x(n)=e^{, 2 w}(n-2)$ then

$$
\begin{gathered}
x(6) z^{-0}+x[1] z^{-1}+x(2) z^{-2}+x(s) z^{-3}+\cdots \\
e^{j 2 \omega} e^{-12 \omega}=1
\end{gathered}
$$

(III) Elgenvaimes are the z-transform of Impulse response!

$$
\begin{aligned}
& H(z)=\sum_{n=-\infty}^{\infty} h(n) z^{-n} \\
& x(n) \\
& h(n) \quad x(n)=x[n]+h[n] \Rightarrow X(z) \quad H(z)=H(z) x(z)
\end{aligned}
$$

Summary
If you take $Z-7 \times$ of input and. IR, then output con be computed as simple multiplication (rot convolution)

Lee 13
(A)

- In previous lecture we talked complex enponentials being eigenfuretions of DT LII systems

$$
\underset{e^{j \omega n}}{\rightarrow \underbrace{h(n)}_{\text {LII }}} \rightarrow \underset{H(\omega) e^{j w n}}{\rightarrow} \quad\left(Z^{\text {and }}=e^{\text {Set }} \boldsymbol{\text { awn }}\right)
$$

- In fact, for DT LII geneal everlasting (ie overs all n) exponertials Z^{n} where Z is a complex now tuber, are eijenfuretions (with $e^{j w n}$ a special case).

$$
H(z) z^{n}
$$

Proof

$$
\begin{aligned}
y[n] & =h(n) * x[n]=h[n] * z^{n}=\sum_{k=-\infty}^{\infty} h(k] z^{n-k} \\
& =Z^{n} \sum_{k=-\infty}^{\sum_{k=-\infty}^{\infty} h[z] z^{-k}} \Leftarrow=z^{n} H(z) \\
H(z) & \text { if som converges }
\end{aligned}
$$

$\longrightarrow Z$ Trass form of $h[n]$
\rightarrow Using this property of Z^{n} we do $\left(\begin{array}{c}\text { write everythis, ie, } \\ \text { input }+ \text { system an as of } \\ \text { liner con } 3 \text { of }\end{array}\right)$ this (freq.domain) \mid instead of this (time domain)

$X[z]$
where $X[z]=\sum_{n=-\infty}^{\infty} x[n) z^{-n} \& \quad H[z]=\sum_{n=-\infty}^{\infty} h(n) z^{-n}$

$$
X[z]=Z\{x[n]\} \quad M[z]=Z\{h(n]\}
$$

- and if we want output $y(z)$ Lack in time-domain we can use

$$
y(n)=z^{-1}\{y(z)\}=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
$$

-This idea of "Frequency domain" has revolutionized engineering! (ard been also useful in math \& Plogics)

$$
\rightarrow \text { solving Differential \& Difference equations. }
$$

(B)

- So let's get to know the Z Transform Letter!

Defn.I $X[z]=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \quad$ bilateral

$$
\text { Def. II } \quad x[z]=\sum_{n=0}^{\infty} x(n) z^{-n} \quad \text { unilateral }
$$

\rightarrow Suitable for causal signals (that start al $n=0$)
(c)
what is Z ?
\rightarrow In general z is a complex number

$$
z=a+j b \text { or } z=A e^{i \theta}
$$

\rightarrow and Z^{n} is an exponential
\rightarrow special lose $Z=e^{j \omega}, Z^{n}=e^{j \omega n} \quad\left(\begin{array}{l}\text { compleat } \\ \text { enponention })\end{array}\right.$
(b)

- ROC: Does $X[z]$ exist for any selection of Z ?

-No!
- Turns out for a given segrverse $x[n]$ you can only choose values of z for which the Z-Tx sum converges!
- So Z-Tx definition also includes a region 7 convegen (ROC) which may be different for different $x(n)$
So Defor. $x(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$

with Z chosen such that the $\{$ ROC. cum converges!
- Le''s explore the ROC a bit fur the with examples.
-Let's say $x[n]=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$

\rightarrow then

$$
\begin{aligned}
x(z)=\sum_{n=0}^{\infty} x[n) z^{-n} & =x[0]+x[1] z^{-1}+x[2] z^{-2} \\
& =1+2 z^{-1}+3 z^{-2}
\end{aligned}
$$

\rightarrow This sum will con verge for any hantselection of complex number Z, so we say $f 0$ this signal

$$
X[z]=1+2 z^{-1}+3 z^{-1} \text { with nov all } z \neq 0
$$

$\xrightarrow{\operatorname{en}^{2}}$ Try $x[n]=S(n)$
\rightarrow dearly $X[z]=1$ with lac all z
Notation \rightarrow we write this as

$$
\delta[n] \Longleftrightarrow 1 \quad \forall z
$$

ens Try $x(n)=4[n]$

$$
x[z]=\sum_{n=0}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} z^{-n}=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots .
$$

Q. when does this series converge?

$$
x(z)=1+\frac{1}{z}+\left(\frac{1}{z}\right)^{2}+\left(\frac{1}{t}\right)^{3}+\cdots=\text { Ear }^{n} \quad\binom{a=1}{r=1 / z}
$$

Power sexes
Q. when does a power ceres converge and what doer it converge to?

$$
\sum a r^{n}=\frac{a}{1-r} \text { iff }|r|<1
$$

so in our case: $X[z]=\frac{1}{1-\frac{1}{z}}$ if $\left|\frac{1}{z}\right|<1$
or, simply $x[z]=\frac{z}{z-1} \quad \begin{aligned} & \text { with } \\ & \text { Doc }\end{aligned}|z|>1$

(E)

How to find $Z-T x$
Matlab

Tables in books

$$
\begin{aligned}
\delta[n] & \Longleftrightarrow 1 \\
\delta(n-k) & \Longleftrightarrow z^{-k} \\
u(n) & \Longleftrightarrow \frac{z}{z-1} \\
\gamma^{n} v(n) & \Longleftrightarrow \frac{z}{z-\gamma}
\end{aligned}
$$

$$
{ }^{17} x_{1}(n) \Leftrightarrow x_{1}(2) \notin x_{2}[n] \Leftrightarrow x_{1}[2]
$$

Propertice Linearity $\Rightarrow a_{1} x_{1}(n)+a_{2} x_{2}(n) \Longleftrightarrow a_{1} X(z)+a_{2} x,[z]$
(2) Shift $x[n-m] \Longleftrightarrow z^{-m} \times[z]$
(3) convolution $x_{1}(n) \times x_{1},(n) \Longleftrightarrow X_{1}[z] x_{2}[z)$

$$
\operatorname{new}_{\text {noc }}=\text { Intersection of } x,(7), x,(z) \text { nocss }
$$

(4) Multiplication by $\gamma^{n} \quad \gamma_{x(n)}^{n} \Leftrightarrow X\left[\frac{z}{\gamma}\right]$
nol see book.
(5) Multipliciatuyn $n x[n] \Leftrightarrow-z \frac{d x[z]}{d z}$
(6) Time reversal $x[-n] \Longleftrightarrow x\left[z^{-1}\right]$
(7) compugate $x^{*}[n] \Longleftrightarrow X^{*}\left[z^{*}\right]$
(F) Practice

$$
\text { (i) } \quad x(n)=\left(5+5^{n}\right) \cup(n), \quad x[z]=\text { ? }
$$

Solni use limarity + Table 5.1

$$
x(n)=\underbrace{5 u(n)}+5^{n} u(n)
$$

Tem 1 $u[n] \Leftrightarrow \frac{z}{z-1} \quad \therefore \quad 5 u[n] \Leftrightarrow \frac{5 z}{z-1}$
tann $\quad \gamma^{n} u(n) \Leftrightarrow \frac{z}{z-\gamma} \quad \therefore 5^{n} n(n) \Leftrightarrow \frac{z}{z-5}$

$$
\Rightarrow x(n) \Longleftrightarrow \frac{s z}{z-1}+\frac{z}{z-5}
$$

ex (ii) $x[n]=5^{n+1} u[n]$
by limenity
$\Rightarrow x(n)=5\left(5^{n} u[n]\right)$ 。

$$
5^{n} u(n) \Leftrightarrow \frac{z}{z-5} \quad \therefore S^{n}\left(s^{n}(n)\right) \Leftrightarrow \frac{5 z}{z-5}
$$

(2xiii) $x(n)=-2 \delta(n-1)+\left[\frac{3}{2}(2)^{n}+\frac{5}{3}(3)^{n}\right] u(n] \quad\binom{$ with zero }{ ICs }

$$
\begin{aligned}
& \text { Tine + Linerits + Table. } \\
& \Rightarrow x[z]=-2 z^{-4}+\frac{3}{2}\left(\frac{z}{z-2}\right)+\frac{5}{3}\left(\frac{z}{z-3}\right)
\end{aligned}
$$

$$
\delta(n) \leftrightarrow 1, \quad \delta[n-4] \leftrightarrow z^{-4}
$$

$$
2^{n} n(n) \Leftrightarrow \frac{z}{z-2}
$$

$$
3^{n} n(n) \leftrightarrow \frac{z}{z-3}
$$

len 14
Q we have been familiarity ourselves with the $Z-T x$.

- Cones (need actor)
- Definition
- Tables
- Properties
- How to find Z Ix (Some examples)
(B) we should Also know how to fund inverse $Z-T X$ -eng. may need to get output $y(z)$ in time domain $y[n]$.

$$
\begin{aligned}
& \text { How to get inv. } Z \text {-Tx? } \\
& \text { ii) Matlab } \\
& \text { Expansias } \\
& \text { - Partial Fractal Decososition } \\
& \text { (ii.) + Papeairs + Table. }
\end{aligned}
$$

(c) Partial Froe: (PFE)

(2) Multiply by z $\frac{1(t)}{z} \quad \begin{aligned} & \text { experience show is that } \\ & \frac{X(t)}{z} \text { lends to bet }\end{aligned}$ $\frac{X(A I)}{2}$ leads t better
(3) Use table
 -visually
ex 1

$$
x[z]=\frac{8 z-19}{(z-3)(z-2)} \leftarrow \begin{aligned}
& \text { distinct } \\
& \text { real wots. }
\end{aligned}
$$

stes $\frac{x[z]}{z}=\frac{8 z-19}{z(z-3)(z-2)} \stackrel{\Delta}{=} F(z)$

Stp2 PFE:

$$
\frac{8 z-19}{z(z-3)(z-2)}=\frac{a}{z}+\frac{b}{z-2}+\frac{c}{z-3}
$$

$$
a=\left.z F(z)\right|_{z=0}
$$

$$
b=\left.(z-2) F(z)\right|_{z=2}
$$

$$
c=\left.(z-3) F(z)\right|_{z=3}
$$

e. 0

$$
\begin{aligned}
c & =\left.(z-3)\left(\frac{8 z-19}{z(z-1)(z-2)}\right)\right|_{z=3} \\
& =\frac{24-19}{3(1)}=\frac{5}{3}
\end{aligned}
$$

Sinibary: $a=-\frac{19}{6}, b=\frac{3}{2}$

$$
\therefore \frac{x[z]}{z}=\frac{-14 / 6}{z}+\frac{3 / 2}{z-2}+\frac{5 / 3}{z-3}
$$

Step (2) Multiply by z

$$
\begin{aligned}
& (2) \text { Multiply by } t \\
& \Rightarrow x[z]=-19 / 6+\frac{3}{z} \frac{z}{z-2}+\frac{5}{3} \frac{z}{z-3}
\end{aligned}
$$

Step use table $\delta[n] \Leftrightarrow 1$

$$
\Rightarrow x(n)=-\frac{19}{6} \delta(n)+\frac{3}{2} 2^{n} u(n)+\frac{5}{3} 3^{n} u(n)
$$

ens Repeated Real Roots $X[z]=\frac{\left.z\left(2 z^{2}-112\right)+12\right)}{(z-1)(z-2)^{3}}$
star) $\frac{x[z]}{z}=\frac{2 z^{2}-11 z+12}{(z-1)(z-2) 3} \triangleq F(z)$

$$
\begin{aligned}
& \text { PYE } F(z)=\frac{a}{z-1}+\frac{b}{z-2}+\frac{c}{(z-2)^{2}}+\frac{d}{(z-2)^{3}} \\
& \rightarrow a=\left.(z-1) F(z)\right|_{z=1}, \quad d=\left.(z-2)^{3} F(z)\right|_{z=2} \\
& \Rightarrow a=-3, d=-2
\end{aligned}
$$

$$
\frac{2 z^{2}-11 z+12}{(z-1)(z-2)^{3}}=\frac{-3}{z-1}-\frac{2}{(z-2)^{3}}+\frac{5}{z-2}+\frac{d}{(z-2)^{2}}
$$

Molt-pty both sides by and set $z \rightarrow \infty$

$$
\begin{aligned}
& 0=-3-0+0+\infty \Rightarrow=3 \\
& \Rightarrow \lim _{z \rightarrow \infty} \frac{-3 z}{z-1}=-3 \times 1=-3 \quad\left(\begin{array}{c}
\text { since } z \text { and } z-1 \\
\text { appech insifuty at } \\
\text { the same rate }
\end{array}\right) \\
& \lim _{z \rightarrow \infty}-2 \frac{z}{(z-2)^{3}}=-2 \times 0=0 \quad\left(\begin{array}{l}
\text { since }(z-2)^{3} \text { approveches } \infty \\
\text { numech faster than } \\
\text { numen tor } z
\end{array}\right.
\end{aligned}
$$

\rightarrow Finally get $d=-1$ by setting $z=0\binom{$ or any. flor }{ convenient valuer }
Stes(2) Multiply by $t \Rightarrow X[t]=-3 \frac{z}{z-1}-2 \frac{z}{(z-2)^{3}}-\frac{z}{(z-2)^{2}}+\frac{3}{(z-2)}$
(tapas) vie tank le to get

$$
\begin{aligned}
& \text { to get } \\
& x[n]=-3 u(n)-2 \frac{n(n-1)}{8} 2_{n(n)}^{n}-\frac{n}{2} 2^{n} u(n)+3(2)^{n} n(n)
\end{aligned}
$$

anauple 3 complex root (Reading exercise
Q. How to Model a system from history of inputs \$ outputs?
(D) claim 1 LTI systems can also be modelled as linear combination of past inputs \& outputs.
claim 2 Above approach for DT LT I systems leads to difference eqvatuns.
cains $Z-T x$ helps represent $\$$ solve difference aeration in an elegant way.
(converts difference equations into simple algebraic equations) avoiding iterative solutions.
\rightarrow Lat us say you maintain a history of inputs $\$$ outputs
\rightarrow for Linear systems, currant output $y[n]$ can be written as linear combos

$I[P$	$0 / P$	
$x[n]$	$y[n]$	
$x[n-1]$	$y[n-1]$	\vee
$x[n-2]$	$y[n-2]$	y
\vdots	\vdots	ψ
$y[n-N]$	$y[n-N]$	

en Marker on table: after three inputs, comment state combined offect of three inputs.
bot there can also be information in past outputs egg if marker pinned, then it gives rotary response.

Past inputs

$$
\begin{array}{r}
\begin{array}{r}
y[n]=b_{0} x[n]+b_{1} x[n-1]+\cdots+b_{N} x[n-N] \\
-\frac{a_{1} y[n-1]-a_{2} y(n-2)-\cdots \cdot a_{N} y(n-N)}{\text { past ontents/states }}
\end{array}
\end{array}
$$

Q. How to write \& solve such eons. efficiently?

$$
\Rightarrow z-T x
$$

\rightarrow If we take $Z-T_{x}$ of beth sides, and use the foot (Property) that

$$
x[n-1] \Longleftrightarrow z^{-1} x[z] \Leftarrow\left\{\begin{array}{c}
\text { assumes } \\
\text { initial } \\
\text { conititas. }
\end{array}\right.
$$

$\rightarrow *$ reduces to

$$
\begin{aligned}
& \text { reduces to } \\
& \begin{array}{r}
Y[z]=b_{0} x[z]+b_{1} z^{-1} x[z]+\cdots+b_{N} z^{-N} \times[z] \\
\\
\end{array} \begin{array}{l}
-a_{1} z^{-1} y[z]-a_{2} z^{-2} y[z] \cdots-a_{N} z^{-N} y[z]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \sum_{Q[z]+a_{1} z^{-1} y[z]+\cdots+a_{N} z^{-N} y[z]=b_{0} x[z]+b, z^{-1} \times[z]+\cdots+b_{N} z^{-v} \times[z]}^{P(z)} \\
& \Rightarrow \frac{\left.1+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right] y[z]}{\left[b_{0}+b_{1} z^{-1}+\cdots+b_{N} z^{-N}\right]} \times[z] \\
& P(z)
\end{aligned}
$$

\rightarrow Let us look into some DT system models and related aspects.
ex

$$
y[n]=3 x[n]+0.8 y[n-1]
$$

Solve for $x[n]=\delta[n]$ and $y[-1]=10$ for $n \geqslant 0$
\rightarrow without using $\partial=$ Ix we will have to solve iteratively

$$
\begin{aligned}
& y[0]=3 x[0]_{0}^{1}+0.8 y[-1]=3+8=11 \\
& y[1]=3 x[1]^{1}+0.8 y[0]=(0.8)(11) \\
& y[2]=3 x[2]^{0}+0.8 y[1]=(0.8)(0.8)(11)=(0.8)^{2}(11) \\
& \vdots \\
& y[n]=\ldots n \geqslant 0 \\
&\left.=(0.8)^{n}(11) \rightarrow n\right) \\
&=(0.8)^{n}(11) u(n)
\end{aligned}
$$

\rightarrow way get event more complicated if $x[r]$ not so simple as $\delta[r]$!
\rightarrow Now let's try with $z-T x$.

$$
x[n]=\delta[n]
$$

$$
s(n) \Leftrightarrow 1
$$

$$
\begin{aligned}
& y[z]=3 x[z]+0.8\left(z^{-1} y[z]+y /^{1}(-1)\right) \\
& y[z]=3+8+0.8 z^{-1} y[z] \\
& \left(1-0.8 z^{-1}\right) y[z]=11 \\
& y[z]=\frac{11}{1-0.8 z^{-1}}=\frac{(11) z}{z-0.8} \Leftrightarrow(11)(0.8) u(n) \\
& =y[n]
\end{aligned}
$$

(6) ZI vs Zs ($\left.\begin{array}{c}\text { Separating effects of } \\ I C \text { s and Input }\end{array}\right)$

\rightarrow what's output for $x(n)=0 \forall n$? (ie find $y(0), y(1) \ldots)$

$$
\rightarrow y(n)=0 \quad \forall n
$$

\rightarrow what if w have

$$
y[n]=3 x[n]+0.8 y[n-1] \text { ? }
$$

ad $x(n)=0 \quad \& n$?

$$
\rightarrow \text { is } y(n) \text { still zero? }
$$

\rightarrow depends on initial condition!

$$
\rightarrow \text { let's soy } y[-1]=10
$$

\rightarrow then

$$
\begin{aligned}
y[0] & =0.8(10)
\end{aligned}=8
$$

\rightarrow what if Initial conditen/stete zero and then we give prut, e.g $x(n)=\delta(r)$, and $y[-1]=0$

$$
\left.\begin{array}{rlrl}
\rightarrow y[0] & =3+0.8 y(-4)=3 \\
y[1] & =3 x[1]+0.8 y[0]=3(0.8) \\
y[2] & =3 x\left[(2]+0.8 y[1]=3(0.8)^{2}\right. \\
\vdots & & \\
y(n) & =3(0.8)^{n}
\end{array} \right\rvert\, \begin{aligned}
& n \geq 0
\end{aligned}
$$

\rightarrow what if state not zero and input $\delta(n)$?
\rightarrow Total Repose!.

$$
\begin{aligned}
& =Z I R+Z S R \\
y[n] & =8(0.8)^{n}+3(0.8)^{n} \quad n \geq 0 \\
& =11(0.8)^{n} u[n]
\end{aligned}
$$

Lec15 Practice

BK1 DTLTI

$$
\begin{aligned}
& x[n]= \begin{cases}1 & 1 \leq n \leq 6 \\
0 & 0 / w\end{cases} \\
& h[n]=\left\{\begin{array}{cc}
2 & -2 \leq n \leq 1 \\
0 & 0 / w
\end{array}\right.
\end{aligned}
$$

find $y[n]$.

Colm
\rightarrow ore wasy: Tape method

eto.
\rightarrow secord way: use defn. of convoluto.

$$
\begin{aligned}
& y(n)=\sum_{k=-\infty}^{\infty} x[k] h[n-x]
\end{aligned}
$$

㲧 DTLI

$$
\begin{aligned}
& n[n]=u[n+2]-u[n-2] \\
& x[n]=(0.7)^{n} u[n]
\end{aligned}
$$

(a) Sketeh $h(n)$

$$
h(n)=\frac{9990}{-2-1010^{-0}}
$$

(b) Find outpont $y[n]$

$$
\begin{aligned}
& \text { outpont } y[n] \\
& \begin{aligned}
y[n]= & \sum_{n=-\infty}^{\infty} h[k] x[n-k]=\sum_{k=-2}^{1}[k] x[n-k] \\
= & \sum_{k=2}^{1}(0.7)^{n-k} u[n-k] \\
= & (0.7)^{n+2} u[n+2]+(0.7)^{n+1} u[n+1)+(0.7)^{n} u[n] \\
& \quad+(0.7)^{n-1} u[n-1]
\end{aligned}
\end{aligned}
$$

for $n \leq-3$: all terms vanis $h=0$

$$
\text { for } \begin{aligned}
n \leq-3 & (0.7)^{0}=1 \\
n=-2 & :(0.7)^{1}+(0.7)^{0}=1.7 \\
n=-1 & \because(0.7)^{2}+(0.7)^{1}+(0.7)^{0}=2.19 \\
n=0 & \therefore(0.7)^{3}+(0.7)^{2}+(0.7)^{7}+(0.7)^{0} \\
n=1 & \therefore(0.7)^{4}+(0.7)^{3}+(0.7)^{2}+(0.7)^{1} \\
n=2 & :(0.7)^{n+2}+(0.7)^{n+1}+(0.7)^{n}+(0.7)^{n-1} \\
n \geq 1 & :(0 .
\end{aligned}
$$

(2) stable? yes $\sum|h[n]|<\infty$
(c) Memonges ?
(d) cavsal? $h(n) \neq 0 \quad n<0$

N! $h(n) \neq 0 \quad n \neq 0$
ext cosher $y[n]=e^{n} x[n] \Rightarrow S[x[n]]=e^{n} x[n]$
(a) linear?

$$
\begin{gathered}
a_{1} x_{1}[n] \\
a_{2} x_{2}[n]-e^{n}\left(a_{1} x_{1}[n]+a_{2} x_{2}(n]\right) \\
\hat{s}=
\end{gathered}
$$

$$
\uparrow=
$$

\rightarrow linear
(b)

\rightarrow TI X
(c) Find Impulse response $h(r)$
\rightarrow when $x(r)=\delta[n)$ we hare $\dot{y}(n)=h[n]$

$$
\Rightarrow \quad h[n]=e^{n} \delta[n]=e^{0} \delta(n]=\delta[n]
$$

(d) Find output to $\delta(n-1)$ with and without convolute. same result? why?
$\xrightarrow{(A)}$ without convolution

$$
\begin{aligned}
& y(n)=S^{\prime}\{x[n]\}=e^{n} x[n] \\
& \Rightarrow y(n)=S^{\prime}\{\delta[n-1)\}=e^{n} \delta[n-1]=e^{1} \delta[n-1]=e \delta(n-1]
\end{aligned}
$$

(B) with convolution

$$
\begin{aligned}
y[n] & =h[n] * \delta[n-1] \\
& =\delta[n] * \delta[n-1], \text { sine is identity] } \\
& =\delta[n-1] \quad \text { of convolution. }
\end{aligned}
$$

\rightarrow Results $A \neq B$
\rightarrow second ore is wrong \rightarrow why? because convolution on ly liter LTD!
any A Time invariant system

$$
\begin{aligned}
& x_{1}[n] \rightarrow y_{,(n)}=2 \delta(n-2]+4 \delta[n-3] \\
& =2 \delta(n-3] \\
& x_{2}(n) \\
& 2 \delta[n-1]+2 \delta[n-3] \quad y_{2}(n)= \\
& 2 \delta[n-2] \\
& \\
& +6 \delta[n-3]+4 \delta[n-4]
\end{aligned}
$$

Prove thant the system is won line ar.

Soln we first note that

$$
x_{2}[n]=x_{1}[n+2]+x_{1}[n]
$$

Since system is TI, output to $x_{1}[n+2]$
should be

$$
\begin{aligned}
x_{3}(n) \triangleq x_{1}[n+2] & y_{1}[n+2] \\
& =2 \delta(n)+u \delta(n-1] \triangleq y_{3}[n]
\end{aligned}
$$

\rightarrow second output to $x_{1}[n]+x_{1}[n+2]$ shool d equal sum of outputs $t \rightarrow$ each individually, ie

$$
\begin{aligned}
& \text { viI }=2 \delta[n-2]+4 \delta[n-3]+2 \delta[n]+4 \delta[n-1] \\
& y_{\text {LIT }}[n]=y_{1}[n]+y_{3}[n]
\end{aligned}
$$

but given $y_{2}[n]$ is different. So system not LTI!

Ex Find the even \& add components of

$$
\begin{aligned}
& x(t)=e^{j t} \\
& \text { w.k.t } x_{e}(t)=\frac{1}{2}[x(t)+x(-t)] \\
& x_{0}(t)=\frac{1}{2}[x(t)-x(-t)] \\
& \Rightarrow \quad x_{2}(t)=\frac{1}{2}\left(e^{j t}+e^{-j t}\right)=\cos t \\
& x_{0}(t)\left.=\frac{1}{2}\left(i^{j t}-e^{-j t}\right)=\hat{j} \sin t\right\} \text { by Euler } \\
& \text { or } e^{j t}=\cos t+j \sin t \\
& \downarrow
\end{aligned}
$$

EA Let $x_{1}(t)$ ant $x_{2}(t)$ be periodic with Ford-periads T_{1} and T_{2}. Under what condetan is the sum $x(t)=x_{1}(t)+x_{2}(t)$ periodic?

Sha $x(t)$ is periodic with period T if

$$
\begin{align*}
& x(t+T)=x(t) \quad \text { RHS } \tag{RHO}\\
& \Rightarrow x_{1}(t+T)+x_{2}(t+T)=x_{1}(t)+x_{2}(t)
\end{align*}
$$

can we get some delve about T ?
we know that $x_{1}(t)+x_{2}(t)=x_{1}\left(t+T_{1}\right)+x_{2}\left(t+T_{2}\right)$

$$
\begin{aligned}
& =x_{1}\left(t+T_{1}\right)+x_{2}\left(t+T_{2}\right. \\
& =x_{1}\left(t+m T_{1}\right)+x_{2}\left(t+k T_{2}\right)
\end{aligned}
$$

fan periodicity
\rightarrow So T wast be simultaneously equal to $m T_{1}$ and $k T_{2}$

$$
\Rightarrow m T_{1}=k T_{2}=T
$$

\rightarrow so $\frac{T_{1}}{T_{2}}$ must lead to a rational number for sum to be periodic

$$
\rightarrow T=\operatorname{LCM}\left(T_{1}, T_{2}\right)-\begin{aligned}
& \text { Abdicates have } \\
& \text { anat they maniple. } \\
& \text { a common mo }
\end{aligned}
$$

So Som of two periodic furbeltions is periodic If their periods form a rational number and the period of the new function is the LCM of the periods -

$$
\begin{aligned}
\rightarrow \text { eng } \quad T_{1} & =10, \quad T_{2}=5, & T & =\operatorname{LcM}\left(T_{1}, T_{2}\right) \\
& \frac{T_{1}}{T_{2}}=\frac{10}{5}=2, & & =10
\end{aligned}
$$

ere
Plotting

$$
x(t)=u(t-2)-u(t+4)+2 \delta(t-3)
$$

$$
\int_{-\infty}^{\infty} x(t) d t=-6+2=4
$$

Lee 16
\rightarrow we now repeat a lot of what we did DT for CT
\rightarrow Nearly all concepts, definitions etc remain same!

$$
\operatorname{Dr}_{\mathrm{T}}\left(T \left\{\begin{array}{ll}
\rightarrow & n \rightarrow t \\
\rightarrow & z^{n} \rightarrow e^{s t} \\
\rightarrow & \sum \rightarrow \int
\end{array}\right.\right.
$$

[time domain]
$[s=\sigma+j \omega]$ [freq. domain]
[operations].
costars
\rightarrow Definition \& ways of checking LTI remain save.
Signals IMPULSE
CT

$$
-\delta[n]= \begin{cases}1 & n=0 \\ 0 & \%\end{cases}
$$

$$
\begin{aligned}
& \delta(n-N) x(n)=\delta(n-N] x[N]
\end{aligned}
$$

$$
-\delta(t-T) \phi(t)=\delta(t-T) \phi(T)
$$

$$
1-\int_{-\infty}^{\infty} \phi(t) \delta(t-T) d t=\phi(T)
$$

$$
-x(t) * \delta(t)=x(t)
$$

$$
\sqrt{-}-x(t)=\int_{-\infty}^{\infty} x(t) \delta(t-\tau) d t
$$

$$
\begin{gathered}
\uparrow \\
\sin \text { of seeled iced imputes. }
\end{gathered}
$$

\rightarrow LTI PR

$$
\Rightarrow y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \triangleq x(t) * h(t)
$$

\rightarrow conv. propectres similar to DT case $\binom{\sec$ Lath. }{$2.4 .1 \$ 2.4 .2}$
\rightarrow characterization of systen via I \cap
also similar to OT case.
-e.g. cavsal iff $h(t)=0 \quad t<0$

- BrBO Stable iff $\int_{-\infty}^{\infty}|h(t)| d t<\infty$
- ete.
\rightarrow Frequency Domain

eigenfurctions (γ complex)

(s complex)

$$
\rightarrow s=\sigma+j \omega \Rightarrow e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}
$$

\rightarrow Real and complex parts fixed/danped/groming sinusoids.

$$
\begin{aligned}
\rightarrow z^{1 \times} \rightarrow \text { Laplace TX. } & \text { Bilaterd } \\
X[z]=\sum_{n=-\infty}^{\infty} x(n) z^{-n} & z^{-T x} \\
(8) & X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
\end{aligned} \begin{array}{ll}
& \text { Bilateral } \\
\text { Laplace } T x .
\end{array}
$$

\rightarrow Again, what is S ? $\quad S=\sigma+j \omega$
\rightarrow RoC: Does $X(s)$ exist for any selection of $\$$?
\rightarrow for a given signal $x(t)$ we can only choose values of S for which (\#) converges!
$\left.\begin{array}{c}\text { artactêproblem } \\ \text { [practice } \\ \text { Later }\end{array}\right]$
\rightarrow Properties \$ T_{x}-Tables
\rightarrow similar to $Z-T_{x}$.
\rightarrow Unilateral Laplace TX.

$$
X(s)=\int_{0}^{\infty} x(t) e^{-s t} d t
$$

(avoids some issues of inverse $T x$)
fared by bilateral
\rightarrow Laplace T_{x} examples .
$-$

$$
\begin{aligned}
& \mathcal{L}[\delta(t)]=\int_{0}^{\infty} \delta(t) e^{-s t} d t \\
& =\left.e^{-s t}\right|_{t=0} ^{\infty} \delta(t) d t=1 \\
& \delta(t) \nLeftarrow 1
\end{aligned}
$$ for all.

$$
\begin{aligned}
-L[u(t)) & =\int_{0}^{\infty} u(t) e^{-s t} d t
\end{aligned}=\int_{0}^{\infty} e^{-s t} d t \quad \begin{gathered}
\text { for e } \\
\text { to vanish }
\end{gathered}
$$

\rightarrow some properties.
\longrightarrow Livear. if $x_{1}(f) \Leftrightarrow x_{1}(s)$
then $a_{1} x_{1}(t)+a_{2} x_{2}(t) \Leftrightarrow a_{1} x_{1}(s)+a_{2} x_{2}(s)$
\rightarrow Tine shifting if $\quad x(t) \Leftrightarrow X(s)$
then $x\left(t-t_{0}\right) \Leftrightarrow X(s) e^{-s t_{0}}$
\rightarrow Frea.shifting.
if $x(t) \Longleftrightarrow X(s)$
then $x(t) e^{s_{0} t} \Longleftrightarrow x\left(s-s_{0}\right)$
\rightarrow Differentiation (time) property
if $x(t) \Longleftrightarrow X(s)$
instal cordite.
then $\frac{d x(t)}{d t} \Leftrightarrow s X(s)-x(0)$
and $\frac{d^{2} x(t)}{d t^{2}} \Leftrightarrow s^{2} x(s)-s x(0)-\dot{x}(0)$ etc.
\rightarrow Integration (Time) propoty

$$
\text { if } x(t) \Leftrightarrow X(s)
$$

then $\int_{0}^{t} x(\tau) d \tau \Leftrightarrow \frac{X(s)}{s}$
\rightarrow Scaling (tim)

$$
\text { if } x(t) \Leftrightarrow X(s)
$$

then $x(a t) \Leftrightarrow \frac{1}{a} \times\left(\frac{s}{a}\right)$
\rightarrow Convolution (Time (for).

$$
\text { if } \begin{aligned}
& x_{1}(t) \Leftrightarrow x_{1}(s) \\
& x_{2}(t) \Leftrightarrow x_{2}(s)
\end{aligned}
$$

then $\left.x_{1}(t) * x_{2}(t) \leftrightarrow x_{1}(\mathrm{~s}) x_{2} / \mathrm{s}\right)$
and $x_{1}(t) x_{2}(t) \Longleftrightarrow \frac{1}{2 \pi j}\left[x_{1}(s) * x_{2}(s)\right]$
\rightarrow Initial f final value of $x(t)$

$$
\begin{aligned}
& x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s) \\
& x(x)=\lim _{s \rightarrow 0} s X(s)
\end{aligned}
$$

Lee 17
\rightarrow we saw that DT-LTI systems could be modeled as Difference equations (of I/p \& //p)
\rightarrow and that these difference equations could be converted into simple algebraic (non-iterative) equations using $Z-T X$
\rightarrow Particularly, using

$$
\begin{aligned}
& \text {, using } \\
& x[n-k] \Leftrightarrow z^{-k} X(s) \text { for zeroICs. }
\end{aligned}
$$

\rightarrow eng a DT UI system:

$$
y[r]=3 x[r]+0.8 y[n-1]
$$

\rightarrow Descorsed by difference en. (contains delay. $\left.\begin{array}{c}\text { sarpluset. }\end{array}\right)$.
\rightarrow vising Z with assumption $I C_{s}=0$ (for simplicity)

$$
\begin{aligned}
& \Rightarrow Y[z]=3 \times[z]+0.8 z^{-1} Y[z] \\
& \Rightarrow \quad Y[z]=\frac{3 \times[z]}{1-0.8 t^{-1}} \\
& Y[t]=H[z] \times[z]
\end{aligned}
$$

\rightarrow simple algebraic er. in Z-domain.
\rightarrow on similar lines
(1) CT-LTI systems are represented by differential equations!
(2) And using Laplace T_{x}. these differentia equations can be converted into simple algebraic equations.
(3) we will wake use of the fact that

$$
\frac{d^{k} y(t)}{d t^{k}} \Longleftrightarrow s^{k} y(s)
$$

Assuming all $I C_{s}=0$.
$\longrightarrow \operatorname{erg} \quad \int \frac{d y(t)}{d t}+6 y(t)=4 x(t) \quad 2 c_{s}=0$

$$
\begin{array}{r}
5 s y(s)+6 y(s)=4 \times(s) \\
(5 s+6) y(s)=4 \times(s) \\
y(s)=\frac{4}{5 s+6} \times(s) \\
y(s)=H(s) \times(s)
\end{array}
$$

\rightarrow simple algebraic eqn.
\rightarrow In geveral, ar CT-LTI system deseribed by N-th order DE (asswmy zon ICs for comenience).

$$
\begin{aligned}
& \frac{d^{N} y(t)}{d t^{N}}+a_{1} \frac{d^{N-1} y(t)}{d^{N-1}}+\cdots+a_{N-1} \frac{d y(t)}{d t} \\
& =b_{0} \frac{d^{N} x(t)}{d t^{N}}+b_{1} \frac{d^{N-1} x(t)}{d t^{N-1}}+\cdots+b_{N} x(t)
\end{aligned}
$$

\rightarrow This can be simplified using faplace as

$$
\begin{gathered}
s^{N} Y(s)+a_{1} s^{N-1} Y(s)+\cdots+a_{N-1} Y(s)=b_{0} s^{N} X(s)+b_{1} s^{N-1} \times(s)+\cdots+b_{N} X(s) \\
\Rightarrow Y(s)\left(s^{N}+a_{1} s^{N-1}+\cdots+a_{N-1}\right)=X(s)\left(b_{0} s^{N}+b_{1} s^{N-1}+\cdots+b_{N}\right) \\
Y(s)=\frac{b_{0} s^{N}+b_{1} s^{N-1}+\cdots+b_{N}}{s^{N}+a_{1} s^{N-1}+\cdots+a_{N-1}} X(s) \\
Y(s)=H(s) X(s)
\end{gathered}
$$

$\rightarrow H(S)=$ System Transfer foretion.
\rightarrow Also Zero-state Response (since we assomed $I C_{s}=0$).
\rightarrow checking stability of CT-LTI from $\mathrm{H}(\mathrm{s})$
\rightarrow BHO stable from $h(t)$ if

$$
\int_{-\infty}^{\infty}|h(t)| d t<\infty
$$

\rightarrow what a bit BIBO stability for $H(S)$?
\rightarrow of zens \& poles
Zeros: values of (S) that wake $\mathrm{H} / \mathrm{s})=0$
poles values of (S) that wake $H(S)=\infty$
\rightarrow For rational lose (ie. LII case) HIs) can be written as rational function eco

$$
\begin{aligned}
& H(s)= \frac{P(s)}{u(s)}=\frac{\left(s-b_{1}\right)\left(s-b_{2}\right) \cdots\left(s-b_{N}\right)}{\left(s-a_{1}\right)\left(s-a_{2}\right) \cdots\left(s-a_{N}\right)} \\
& \Rightarrow H(s)=0 \text { for } s=b_{1}, b_{2}, \ldots, b_{\sim} \\
& H(s)=\infty \text { frs } s=a_{1}, a_{2}, \ldots, a_{N}
\end{aligned}
$$

\longrightarrow Core: all poles in left half slave

$$
H(s)=\frac{1}{s+3}+\frac{2}{s+4} \Rightarrow h(t)=\frac{e^{-3 t} u(t)+2 e^{-4 t} u(t)}{\text { both decays }} \text { functions. }
$$

$$
\Rightarrow \quad \int_{-\infty}^{\infty} \ln (t) \mid d t<\infty
$$

if all polys in left half plane (as the y load to in tine domain
\rightarrow case: even a single pole in RMP

$$
\begin{aligned}
H(s) & =\frac{1}{s+3}+\frac{2}{s-4} \\
\Rightarrow h(t) & =\underbrace{e^{-3 t} u(t)}_{\text {da ayin }}+2 \underbrace{e^{4 t} u(t)}_{\text {exponentially }}
\end{aligned}
$$

Now $\int_{-\infty}^{\infty}|h(t)| d t=\infty$.
\therefore CTLTI BMO st-ble iff all poles of H(S) in LHP!?

Assuming $H /(\mathrm{S}$) in reduced form (common pole ar zarve cancelled)

- Endorses

$$
\begin{aligned}
\text { (3) Zero-Input : } & \rightarrow \text { wo input } \\
\text { Response } & \rightarrow I C_{s} \neq 0 \\
\text { Total Response }= & Z S R+Z I R: \rightarrow I C_{s} \neq 0
\end{aligned}
$$

\rightarrow example: Consider CTLTI system.

$$
\frac{d^{2} y(t)}{d t^{2}}+\frac{5 y(t)}{d t}+6 y(t)=\frac{d x(t)}{d t}+x(t)
$$

$\xrightarrow{(1)}$ Let's do zSR ie $R C_{s}=0$
\rightarrow some input! Let's say $x(t)=e^{-4 t} u(t)$
\rightarrow Find $y(t)$!
\rightarrow rote: easier if we use Laplace
\rightarrow using Laplace table with zero $E l_{s}$ gives

$$
\begin{aligned}
& s^{2} Y(s)+5 s y(s)+6 y(s)=s X(s)+X(s) \\
& \Rightarrow Y(s)=\frac{s+1}{s^{2}+5 s+6} X(s)=\frac{s+1}{\left(s^{2}+5 s+6\right)(s+4)} \\
& \rightarrow \text { using PFE } Y(s)=\frac{-\frac{1}{2}}{s+2}+\frac{2}{s+3}-\frac{3 / 2}{s+4} \\
& \rightarrow \text { From table } \mathcal{L} \quad \\
&\left.H(t)=-\frac{1}{2} e^{-2 t}+2 e^{-3 t}-\frac{3}{2} e^{-4 t}\right) u(t)
\end{aligned}
$$

$(2$ now let's do Zero-Enput Response.

$$
\rightarrow x(t)=0 \quad \forall t
$$

\rightarrow Some $I C_{s}$! eeg, $y(0)=2, \dot{y}(0)=1$
\rightarrow same system, but now

$$
\frac{d y(t)}{d t} \Leftrightarrow s y(s)-y(0)
$$

etc.

$$
\begin{aligned}
& \Rightarrow \\
& \Rightarrow \quad s^{2} y(s)+5 s y(s)+6 y(s)=2 s+11\binom{\text { wm }}{I / p} \\
& \Rightarrow \quad y(s)=\frac{2 s+11}{s^{2}+5 s+6}=\frac{7}{s+2}-\frac{5}{s+3}
\end{aligned}
$$

\rightarrow very Laplan Table : $y(t)=\left(7 e^{-2 t}-5 e^{-3 t}\right) u(t)$

$$
Z \Phi R
$$

(3) The case of Total Response i.e.

$$
\rightarrow I C_{\xi} \neq 0
$$

\rightarrow Input $\neq 0$
\rightarrow for example above, you can verify that

$$
\begin{aligned}
T R= & Z I R+Z S R \\
\Rightarrow y(t)= & \left(7 e^{-2 t}-5 e^{-3 t}\right) u(t) \\
& +\left(-\frac{1}{2} e^{-2 t}+2 e^{-3 t}-\frac{3}{2} e^{-7 t}\right) u(t)
\end{aligned}
$$

Lee 18 Practice (Aaphac)

$$
\begin{aligned}
& \text { Ext } x(s)=\frac{7 s-6}{s^{2}-s-6} \text { find } x(1) \\
& x(s)=\frac{7 s-6}{s^{2}-3 s+2 s+6} \quad\left(\begin{array}{l}
-3+2=-6 \\
-3+2=-1
\end{array}\right. \\
& =\frac{7 s-6}{s(s-3)+2(s-3)}=\frac{7 s-6}{(s+2)(s-3)}=\frac{k_{1}}{s+2}+\frac{k_{2}}{s-3}
\end{aligned}
$$

Cover up me thad.

$$
\left.k_{1}=\frac{7 s-6}{\underbrace{}_{\substack{(s+y) \\ \not \\ \text { covered-up }}}=\frac{-14-6}{-2-3}=4} \right\rvert\,
$$

similar=

$$
\begin{aligned}
& k_{2}=\left.\frac{7 s-6}{(s+2)[s-3)}\right|_{s=3}=\frac{21-6}{3+2}=3 \\
& X(s)=\frac{4}{s+2}+\frac{3}{s-3}
\end{aligned}
$$

Quick cheek Dat $S=0$ (or any comenient valve) to see onginal is expanded versions give same answer (rote: though this dies not juivantee correctness, it gives some confidence)
\rightarrow use Laplace table $\frac{1}{s+a} \Leftrightarrow e^{-a t} u(t)$

$$
\Rightarrow x(t)=\left(4 e^{-2 t}+3 e^{3 t}\right) 4(t)
$$

Ex. 2

$$
x(s)=\frac{2 s^{2}+5}{s^{2}+3 s+2} \text {, find } x(t) \text {. }
$$

\rightarrow This is $M=N$ case (same hight order in WWw and den)
\rightarrow shortcut for such cases:
separate out coefficient of highest porer.

$$
\begin{aligned}
\Rightarrow x(s)= & \frac{2 s^{2}+5}{s^{2}+3 s+2}=\frac{2 s^{2}+5}{(s+1)(s+2)} \\
& =2+\frac{k_{1}}{s+1}+\frac{k_{2}}{s+2}
\end{aligned}
$$

\rightarrow Now apply caver- up roles, to get.

$$
\begin{aligned}
& k_{1}=7 \text { ad } k_{2}=-13 \\
& \Rightarrow X(s)=2+\frac{7}{s+1}-\frac{13}{s+2} \\
& \rightarrow \text { Use faplar table } \frac{1}{s+a} \Leftrightarrow e^{-a t} u(t) \\
& \Rightarrow \Leftrightarrow \delta(t) \\
& \Rightarrow x(t)=2 \delta(t)+\left(7 e^{-t}-13 e^{-2 t}\right) u(t)
\end{aligned}
$$

Ex $X(s)=\frac{5 e^{-2 s}}{(s+1)(s+2)}$ find $x(t)$.
\rightarrow We note that $e^{-2 s}$ represents delayed version.

$$
\begin{aligned}
& \text { if } x_{1}(t) \Leftrightarrow x_{1}(s) \\
&\text { then } \left.x_{1}(t-2) \Leftrightarrow e^{-2 s} x_{1} / s\right) \\
& \Rightarrow x(s)=\underbrace{\left(\frac{5}{(s+1)(s+2)}\right)}_{X_{1}(s)}\left(e^{-2 s}\right) \\
& \Rightarrow x_{1}(s)=\frac{5}{(s+1) /(t+2)}=\frac{5 s}{s+1}-\frac{5}{s+2} \text { (PFE) } \\
& \Rightarrow x_{1}(t)=\left(5 e^{-t}-5 e^{-2 t}\right) 4(t) \\
& \therefore x(t)= \\
& x_{1}(t-2)=\left(5 e^{-(t-2)}-e^{-2(t-2)}\right)_{4(t-2)}
\end{aligned}
$$

Ext Given $e^{-a t} \cos b t u(t) \Leftrightarrow \frac{s+a}{(s+a)^{2}+b^{2}}$ Find $\mathcal{L}\{\cos b t u(t)\}$. \rightarrow set $a=0$

$$
\begin{aligned}
& a=0 \\
& \cos b t u(t) \Leftrightarrow \frac{s}{s^{2}+b^{2}}
\end{aligned}
$$

Ex5 Assuming Zero $I C_{3}$, sotve DEे $\mathcal{L}-T x$.

$$
\frac{d^{2} x(t)}{d t^{2}}=\delta(t)-3 \delta(t-2)+2 \delta(t-3)
$$

\Rightarrow Taking \mathcal{L}-TX

$$
\begin{array}{ll}
& s^{2} X(s)-s x(0)-\dot{x}(0)=1-3 e^{-2 s}+2 e^{-3 s} \\
\Rightarrow & x(s)=\frac{1}{s^{2}}\left(1-3 e^{-2 s}+2 e^{-3 s}\right)
\end{array}
$$

Ex6 use I-Tx to find the cinu.

$$
\begin{aligned}
c(t) & =\underbrace{e^{a t} u(t)}_{x_{1}(t)} * e^{e^{b t} u(t)} \\
\rightarrow \quad x_{2}(t) & \Leftrightarrow \frac{1}{s-a} \\
x_{2}(t) & \Leftrightarrow \frac{1}{s-b}
\end{aligned}
$$

Taleng $\mathcal{L}-T x$

$$
\left.\xrightarrow{\text { ang }} \mathcal{L}-T x(s)=X_{1}(s) X_{2} / s\right)=\frac{1}{(s-a)(s-b)}
$$

$\xrightarrow{\text { usin PFE }}\left((s)=\frac{1}{a-b}\left(\frac{1}{s-a}-\frac{1}{s-b}\right)\right.$

$$
\left.\Rightarrow(H)=\frac{1}{a-b}\left(e^{a t}-e^{b t}\right) u H\right)
$$

$\operatorname{Sims}_{\text {mostly }}$ Lee $19+$ lee 20
(1) we saw that Fourier TX
=Given a time domain signal
Find which complex sinusoids need to be combined to form this signal.
\longrightarrow FT records the amplitudes \$ phases of the required complex sinsads.
(2)

Deft.
FT: write $x(t)$ as a combination of complex sinusoids ($e^{j \omega t}$).

$$
\begin{aligned}
& \Rightarrow \quad x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \\
& \Rightarrow \quad X(\omega)^{k}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{aligned}
$$

IF T
$\omega=2 \pi f$
$\xrightarrow{(3)} X(\omega)$ is a complex variable.

$$
\begin{aligned}
& X(\omega)=\operatorname{Re}(X(\omega))+j \operatorname{In}(X(\omega)) \\
& X(\omega)=|X(\omega)| e^{j L X(\omega)}
\end{aligned}
$$

\longrightarrow stores information on magnitudes $\$$ phases of sinusoids required to firm the signal.
(4) Let's get to know the mathematics of FT!!
(a) What is $\int_{-\infty}^{\infty} e^{-j \omega t} d t=$?
\Rightarrow There are two cases:
for $\omega \neq 0 \quad e^{-j \omega t}$ is a periodic function

$$
e^{-j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

for $\omega=0 \quad e^{-i \omega t}=e^{0}=1$ is a constant.

$$
\begin{aligned}
& e^{-j(0) t}=\cos \left(0^{1}\right)^{1}+j \sin (0)^{0}=1
\end{aligned}
$$

\Rightarrow you can convince yourselves that for $\omega \neq 0$, the total area under $e^{-j \omega t}$ equals zero. ($\left.\begin{array}{l}\text { eg by drawing } \\ \text { real } \$ \text { comploon parts }\end{array}\right)$
\Rightarrow for $\omega=0$ we have

$$
\int_{-\infty}^{\infty} e_{0}^{0} d t=\int_{-\infty}^{\infty} 1 \cdot d t=\left.t\right|_{-\infty} ^{\infty}=\infty
$$

\Rightarrow so is zero for all values of ω, except $\omega=0$ where it has infinite amplitude.
continuovsitime \rightarrow we know such a forction: Impulse $\delta(\omega)$

$$
\therefore \int_{-\infty}^{\infty} e^{-j \omega t} d t=2 \pi \delta(\omega)
$$

\rightarrow the 2π appears due to $\omega=2 \pi f$
\rightarrow if we had $\int_{-\infty}^{\infty} e^{-i f t} d t$ result wold be just $\delta(\omega)$
$\xrightarrow{\text { (b) }}$ vising the above, let's find $F T$ of a constant (k)

$$
x(t)=k \quad \forall t
$$

$$
F T: \quad X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x e^{-j \omega t} d t
$$

$$
\begin{aligned}
& =k \int_{-\infty}^{\infty} e^{-j \omega t} d t \rightarrow \text { same os } \\
& =k(2 \pi \delta(\omega))=2 \pi k \delta(\omega) \Rightarrow \frac{\left\{\begin{array}{l}
x(\omega)=2 \pi \delta(\omega)
\end{array}\right.}{\omega}
\end{aligned}
$$

\rightarrow this makes sense, since a constant has zero frequency (resulting in $X(\omega)$ having a peak at $\omega=0$, and zero evergutare else)
(C) Now, let's find FT of a single complex sinusoid eng $x(t)=e^{j \omega_{0} t}$ where $\omega_{0}=$ covenant.

$$
X(\omega)=\int_{-\infty}^{\infty} e^{j \omega t} e^{-j \omega t} d t=\int_{-\infty}^{\infty} e^{j\left(\omega_{0}-\omega\right) t} d t
$$

\rightarrow which is similar to except that now $e^{i\left(\omega_{0}-\omega\right) t}$ is a constant at $\omega=\omega_{0}$
\rightarrow This gives a shifted Impulse!.

\rightarrow which makes sense, since it sayst that to form $e^{j \omega_{0} t}$ we just need the complex sinusoid of frequary ω_{0}.
(d) Now let's find FT of a pure cosine.

$$
x(t)=\cos \left(\omega_{0} t\right) \quad \omega_{0}=\text { constant. }
$$

$$
x(t)=\cos \left(\omega_{0} t\right) \quad \cos \left(\omega_{0} t\right)=\frac{1}{2} e^{j \omega_{0} t}+\frac{1}{2} e^{-j \omega_{0} t}-
$$

$$
\begin{aligned}
& \rightarrow X(s)=\int_{-\infty}^{\infty} \cos \left(\omega_{0} t\right) d t=\frac{1}{2} \int_{-\infty}^{\infty} e^{j \omega_{0} t} d t+\frac{1}{2} \int_{-\infty}^{\infty} e^{-j \omega_{0} t} d t \\
& \text { us is }(s)=\frac{1}{2}\left(2 \pi \delta\left(\omega+\omega_{0}\right)+2 \pi \delta\left(\omega-\omega_{0}\right)\right)=\pi\left(\delta\left(\omega+\omega_{0}\right)+\delta\left(\omega-\omega_{0}\right)\right)
\end{aligned}
$$

\rightarrow which make sense since (A) also fells us that to form $\cos \left(\omega_{0} t\right)$ you need two complex sinusoids, one at ω_{0} and are at $-\omega_{0}$

- Let's find FT of an exponential (not complex)

$$
x(t)=e^{-a t} u(t) \quad a \text { Real }
$$

\rightarrow There ar two coles
$\operatorname{cose}(1) a>0$

$$
\begin{aligned}
& \operatorname{cose}(1) a>0 \\
& X(\omega)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-i \omega t} d t=\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t
\end{aligned}
$$

$$
=-\left.\frac{1}{a+j \omega} e^{-a t} e^{-j \omega t}\right|_{0} ^{\infty}
$$

oscillating function with th to
modules alley less
\rightarrow modulus alwey less then \rightarrow exponentially decays since $a \neq 0$ and $t \geq 0$

$$
\Rightarrow X(w)=\frac{1}{a+j w} \quad a>0
$$

$\Rightarrow|x(\omega)|=\frac{1}{\sqrt{a^{2}+\omega^{2}}}$

cose (11) $a<0$

$$
\begin{aligned}
& \text { (11) } a<0 \\
& X(\omega)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-a t} e^{-j \omega t} d t \\
& \text { _at_jut}\left.\right|^{\infty}
\end{aligned}
$$

$$
=-\left.\frac{1}{a+j \omega} e^{-a t} e^{-j \omega}\right|_{0} ^{\infty}
$$

$$
\Rightarrow X(\omega)=\infty=\begin{array}{|l}
\text { FT } \\
\text { Does Not } \\
\text { Exist }
\end{array}
$$

(1) Let's find $F T$ of $s(t)$

Samplif Propety

$$
\begin{gathered}
x(t)=\delta(t)=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega(0)} d t=\int_{-\infty}^{\infty} \delta(t) d t=1 \\
X(\omega)=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} d \text { Smplis pmpmeds! }
\end{gathered}
$$

\Rightarrow Dvality rote form (b) \& (t) that

anl

\rightarrow In foet this two-way relation (with appoppriate scaliy by 2π) hols for all FT pairs! << callud Dualit,

$$
x(t) \Longleftrightarrow X(w)
$$

Slider Lectors $21: 22 \rightarrow$ Practice AT
(1) Show that if $x(t) \Leftrightarrow X(\omega)$ then $x\left(t-t_{0}\right) \Leftrightarrow e^{j \omega t_{0}} X(\omega)$

Sol:

$$
\mathcal{F}\left\{x\left(t-t_{0}\right)\right\}=\int_{-\infty}^{\infty} x\left(t-t_{0}\right) e^{-j \omega t} d t
$$

\rightarrow by charge of variable $\tau=t-t_{0}$, we get

$$
\begin{aligned}
f\left\{x\left(t-t_{0}\right)\right\} & =\int_{-\infty}^{\infty} x(\tau) e^{-j \omega\left(\tau+t_{0}\right)} d \tau \\
& =e^{-j \omega t_{0}} \int_{-\infty}^{\infty} x(\tau) e^{-j \omega \tau} d \tau=e^{-j \omega t_{0}} X(\omega)
\end{aligned}
$$

(2) Shaw that if $x(t) \Leftrightarrow x(w)$ then $x(t) e^{j \omega_{0} t} \Leftrightarrow X\left(\omega-\omega_{0}\right)$

Sole

$$
\begin{aligned}
& F\left\{x(t) e^{j \omega_{0} t}\right\}=\int_{-\infty}^{\infty} x(t) e^{j \omega_{0} t-j \omega t} e^{-j} d t \\
& =\int_{-\infty}^{\infty} x(t) e^{-j\left(\omega-\omega_{0}\right) t} d t=x\left(\omega-\omega_{0}\right)
\end{aligned}
$$

(3) Verify the duality bropenty i.e

$$
\text { if } x(t) \Leftrightarrow x(w)
$$

then $X(t) \Leftrightarrow 2 \pi x(-\omega)$
Soln By Defn. of IFT $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$

$$
\Rightarrow \quad \int_{-\infty}^{\infty} x(w) e^{j \omega t} d w=2 \pi x(t)
$$

\rightarrow replacing t with -t, we get

$$
\int_{-\infty}^{\infty} x(\omega) e^{-j \omega t} d \omega=2 \pi x(-t)
$$

\rightarrow Now intercharging t and ω, we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& =2 \pi x(-\omega) \\
\Rightarrow \quad X(t)\} & =2 \pi x(-\omega) \\
& x(t) \Leftrightarrow 2 \pi x(-\omega)
\end{aligned}
$$

(4) [using properties)
$=$ Find FT of $x(t)=\frac{1}{a^{2}+t^{2}}$
\rightarrow we notice from FT Table that

$$
x(t) e^{-a \mid t 1} \Leftrightarrow \frac{2 a}{a^{2}+w^{2}} x(s)
$$

$\rightarrow \underline{\text { By Duality }}$ (i.e $x(t) \Leftrightarrow 2 \pi x(-\omega))$
$\underbrace{\text { i- }}_{t \text { with - w on LHes and multiply by }}$ with ten RHS, and replace

$$
\begin{aligned}
& \Rightarrow x(t)=\frac{2 a}{a^{2}+t^{2}} \quad\left(\sin \quad x(s)=\frac{2 a}{a^{2}+w^{2}}\right) \\
& \Rightarrow x(-w)=e^{-a|\omega|} \quad\left(\text { since } x(t)=e^{-a|t|}\right)
\end{aligned}
$$

Duality gives: $\frac{2 a}{a^{2}+t^{2}} \Leftrightarrow 2 \pi e^{-a|\omega|}$
Ry linearity : $\frac{1}{a^{2}+t^{2}} \Leftrightarrow \frac{2 \pi}{f a} e^{-a|\omega|}$
(5) Verifg that if $x(t) \Leftrightarrow x / s$)
then $\frac{d x(t)}{d t} \Leftrightarrow j \omega x(\omega)$

Soln using IFT furmolap

$$
\begin{align*}
& x(t)^{\prime}=\frac{1}{2 x} \int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega \\
& \Rightarrow \frac{d x(t)}{d t}=\frac{1}{2 \pi} \frac{d}{d t}\left[\int_{-\infty}^{\infty} x(\omega) e^{j \omega t} d \omega\right] \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(\omega) \frac{g}{g t}\left(e^{j \omega t}\right) d \omega \\
& \frac{d x(t)}{d t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty N} \sum^{\infty} x(\omega) e^{j \omega t} d \omega
\end{align*}
$$

Compariz (\&) $4 \otimes$ telle os that

$$
\frac{d x(t)}{d t} \Leftrightarrow j w x(w)
$$

(6) Find IFT of $X(\omega)=\frac{1}{(a+j \omega)^{2}}$ using convolution the oren.

Sols Tine convolution theorem says

$$
\text { if } y(t)=x(t) * h(t)
$$

then $Y /(\omega)=X(\omega) H(\omega)$
Now we have $X(\omega)=\frac{1}{(a+j \omega)^{2}}=\frac{1}{(a+j \omega)} \frac{1}{(a+j \omega)}$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
x_{1}(w) & x_{2}(w)
\end{array}
$$

$$
\begin{aligned}
\Rightarrow & x(\omega)=X_{1}(\omega) X_{2}(\omega) \\
\Rightarrow & x(t)=x_{1}(t) * x_{2}(t)
\end{aligned}
$$

where $x_{1}(t)=x_{2}(t)=e^{-a t} u(t) \quad\left(\begin{array}{c}\operatorname{sinch} \\ \left.e^{-a t} u(t) \Leftrightarrow \frac{1}{a+j \omega}\right)\end{array}\right.$

$$
\begin{aligned}
\Rightarrow x(t) & =e^{-a t} u(t) * e^{-a t} u(t) \\
& =\int_{-\infty}^{\infty} e^{-a r} u(\tau) e^{-a(t-r)} u(t-r) d r \\
& =e^{-a t} \int_{0}^{t} d r=t e^{-a t} u(t)
\end{aligned}
$$

(7) Accuming tew Ils, find impulse resporse of

$$
\frac{d y(t)}{d t}+x y(t)=x(t)+\frac{d x(t)}{d t}
$$

Solv
Takiy FF

$$
\begin{gathered}
\Rightarrow j w y(\omega)+2 Y(\omega)=X(\omega)+j \omega x(\omega) \\
\Rightarrow(j \omega+2) Y(\omega)=(1+j \omega) X(\omega) \\
y(\omega)=\frac{(1+j \omega)}{(2+j \omega)} X(\omega) \\
\Rightarrow H(\omega)=\frac{1+j w}{2+j w}=\frac{2+j w-1}{2+j w}=1-\frac{1}{2+j \omega}
\end{gathered}
$$

\Rightarrow Takin IFT to get

$$
h(t)=\delta(t)-e^{-2 t} u(t)
$$

(3) Parseval's Theorem

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|x(w)|^{2} d w
$$

\longrightarrow Reading assignment : look for its proof $\$$ usage!
(9) Given syefur with zero-state

$$
\frac{d y(t)}{d t}+2 y(t)=x(t)
$$

find $y(t)$ if $x(t)=e^{-\frac{t}{t}} u(t)$

Sol

$$
\begin{aligned}
& w Y(w+2 Y(w)=X(\omega) \\
& H(w)=\frac{Y(\omega)}{Y(w)}=\frac{1}{2+j w}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ald } X(\omega)=\frac{1}{1+; \omega} \\
\Rightarrow & Y(\omega)=H(\omega) \times(\omega)=\frac{1}{1+j \omega} \frac{1}{2+j \omega}
\end{aligned}
$$

with PFE: $y(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$

Lecture 23
Wrap up introduction to Fourier with the final three pons.
(1) What happens to frequencies as they pass through LT I systems?
(3) Forrier series: spectra of periodic signals. Link b/w Z, \mathcal{L}, and f.
(1)

\Rightarrow whet: $y(t)=x(t) * h(t)$
Take FT $\quad Y(\omega)=X(\omega) H(\omega)$

$$
\left(\begin{array}{rl}
\text { recall } \\
H(\omega) & =\text { complex } \\
& =|H(\omega)| e^{j(H(\omega)}
\end{array}\right.
$$

\rightarrow So $H(w)$ acts as a scaling and phase shifting in the frequencies of $\overline{x(t)}$ (cartancedolprepresented by $X(w)$)
\longrightarrow To sec this, write $H(\omega)=|H(\omega)| e^{j(H(\omega)}$ and $X(\omega)=|X(\omega)| e^{j\langle X(\omega)}$
\rightarrow Then output is $y(\omega)=|H(\omega)| X(\omega) \mid e^{j}$ phase shifter

$$
|y(\omega)| \ll \begin{gathered}
\text { amplitude } \\
\text { scale }
\end{gathered}
$$

$\rightarrow H(\omega)=$ Transfer function, also called Frequency Resporse of the system as it tels what the system will do to frequencies.
$\xrightarrow[\text { by }]{\text { by }}$ Let's say there is a system that behaves as a filter, saying I will only allow frequencies below wo to pass and will block all other s ('Low Pass Filter')
\longrightarrow The $|\mathrm{H}(\omega)|$ of such a system could look like

\rightarrow Now what happens to a signal that has frequencies both above and below ω_{0} ? , lis, let's say the signal frequencies are

\rightarrow since $|Y(\omega)|=|X(\omega)||H(\omega)|$, we set

$$
\begin{aligned}
& |X(\omega)||H(\omega)| \Rightarrow \frac{w_{0}}{-w_{0}} \\
& =Y(\omega)
\end{aligned}
$$

\rightarrow ie only law frequency part remains after filtering.
en 2
\rightarrow How about a system that says I will let frequencies below ω_{0} pass through urehanged but will amplify frequencies above w_{0} by $10 x$?,
\rightarrow The magnitude here. resp. H / ω) of such system (amplifier?) may look like

\rightarrow Now what happens to frees of $X(\omega)$ with $|X(\omega)|$

$$
\xrightarrow{\text { weget }}|y(w)|^{*}=|x(w)||H(w)|
$$

en 3 Given $|H(w)|$

and $|X(\omega)|$

How should (y/w)| clark)

$$
\rightarrow|y(\omega)| \Rightarrow
$$

(2) Previously we saw that: "Periodic signals have discrete spectra". erg

whereas aperiodic signals have continuous spectra, erg

\longrightarrow Discrete forctions lead to series, so instead of han

$$
x(t)=\frac{1}{2 \pi} \int x(\omega) e^{j \omega t} d \omega<\text { Forcer Integral (Transform) }
$$

we can have something luke

$$
x(t)=\sum_{\forall n} x_{n} e^{j n \omega t}
$$

$<$ Forcer series in all practical cases
\rightarrow In fact, it can be shown that L a periodic signal with furdomertol T_{0} and angular frearyy $\omega_{0}=\frac{2 \pi}{T_{0}}$ can be written as a sum of sinusoids of frequencies ω_{0} and its multiples $\left(2 \omega_{0}, 3 \omega_{0}, 4 \omega_{0} \ldots\right)$, i.e it can be written in terms of

$$
e^{j \omega_{0} t}, e^{j 2 \omega_{0} t}, e^{j 3 \omega_{0} t}, \cdots e^{j n \omega_{0} t}, \ldots
$$

\rightarrow This is called the Exponential Fourier series, and it says that $x(t)$ is periodic with fund amoral frequency w_{0} then we can write it os

$$
\cdot x(t)=\sum_{n=-\infty}^{\infty} D_{n} e^{j n \omega_{0} t}
$$

\rightarrow In fact it can be shown that as $T_{0} \rightarrow \infty$ (i.e signal becomes apenidic) becomes the Fourier Transform (integral) $\quad X(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$

\rightarrow Furthermore, we can also show that $x(t)$ with ford freer. w_{0} can be written in terming of ces(n $\left.\omega_{0} t\right)$ and $\sin \left(n \omega_{0} t\right)$ as

$$
x(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right.
$$

\rightarrow This representation is called
"Trigonometric Fourier series".
\longrightarrow we will not touch upon these in further detail.
(3) $\exists, \mathcal{L}, \mathcal{J}$
we have seen that Z, \mathcal{L}, and f use bases foretorn
$z^{n}, e^{s t}$, ard $e^{\text {jut }}$ respectively with $(z+s$ complex numbers $)$
such that

$$
\begin{aligned}
& X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} \quad s=\sigma+j w \\
& X(w)=\int_{-\infty}^{\infty} x(t) e^{-j w t} d t \\
& X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
\end{aligned}
$$

\rightarrow How are they related?

-continuous sigrals

- ves complea enponertals allowing for pore, gowisy, ald decaying simsoids as

$$
e^{-s t}=e^{-s t} e^{-j \omega t}
$$

Ingedints:
~NN nm
$N A$

$$
X(s)=\int_{-\infty}^{\infty} n(t) e^{-s t} d t
$$

Ingredente:
$\bigcap \Omega$

$$
X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
$$

ES 332 Signals and Systems
 with
 Dr. Naveed R. Butt
 @
 GIKI - FES

In the last few months, we have seen...

What is a signal and what is a system? (from engineering mathematics perspective)

Chapter 1

What are some of the common types of signals and systems?

Chapter 1

What are some of the useful properties of signals and systems?

Chapter 1

What are some of the major ways of modelling and analyzing signals and systems?

Time Domain
Laplace
Z-Transform
Fourier

Chapters 2, 3
Chapter 4
Chapter 5
Chapters 6, 7

How do signals and systems interact?

Chapters 2-7

Let us now look at some practical applications of what we've learned...

- Examples from my own research: Material Identification
- Analyzing circuits : Laplace Transform
- Wireless Communications : Z Transform
- Filter Design : Fourier Transform

CONPHIRMER Project

Question: how to quickly tell whether a medicine is fake?

NMR vs. NQR

NQR Signal

NQR Signal Modeling

$$
\begin{aligned}
& \text { (s) Seal } \\
& y_{m}^{(p)}(t)=\sum_{k=1}^{d^{(p)}} \alpha_{k}^{(p)} e^{-(t+m \mu) \eta_{k}^{(p)}} e^{-\beta_{k}^{(p)}\left|t-t_{s p}\right|+i \omega_{k}^{(p)}(T) t} \\
& \omega_{k}^{(p)}(T)=a_{k}^{(p)}-b_{k}^{(p)} T \\
& \alpha_{k}^{(p)}=\rho \kappa_{k}^{(p)} \quad\left\|\kappa-\kappa_{a}\right\|_{2}^{2} \leq \epsilon
\end{aligned}
$$

Let us now look at some practical applications of what we've learned...

- Examples from my own research: Material Identification
- Analyzing circuits : Laplace Transform

Wireless Communications: Z Transform
 Filter Design : Fourier Transform

"System"

AN ENTITY THAT PROCESSES A SIGNAL

Example of a System

Example of a System

System Modeled as a Differential Equation (Time-Domain)

$$
I_{\mathrm{dc}} \uparrow \text { 隹 }
$$

Using Laplace (Frequency Domain) to Solve and Analyze the System

$$
\begin{gathered}
\frac{v(t)}{R}+\frac{1}{L} \int_{0}^{t} v(x) d x+C \frac{d v(t)}{d t}=I_{\mathrm{dc}} u(t) \\
\frac{V(s)}{R}+\frac{1}{L} \frac{V(s)}{s}+C\left[s V(s)-v\left(0^{-}\right)\right]=I_{\mathrm{dc}}\left(\frac{1}{s}\right),
\end{gathered}
$$

Using Laplace (Frequency Domain) to Solve and Analyze the System

$$
\begin{gathered}
\frac{V(s)}{R}+\frac{1}{L} \frac{V(s)}{s}+C\left[s V(s)-v\left(0^{-}\right)\right]=I_{\mathrm{dc}}\left(\frac{1}{s}\right), \\
V(s)=\frac{I_{\mathrm{dc}} / C}{s^{2}+(1 / R C) s+(1 / L C)}
\end{gathered}
$$

Put values and use PFE to get inverse Laplace.

Using Laplace (Frequency Domain) to Solve and Analyze the System

$$
v(t)=\mathscr{L}^{-1}\{V(s)\}
$$

Analysis: what are the initial and final (steadystate) values of $i_{L}(t)$?

Assuming zero ICs

$$
\begin{aligned}
i_{L}(\infty) & =\lim _{s \rightarrow 0} s I_{L}(s)=I_{d c} \\
i_{L}(0) & =\lim _{s \rightarrow \infty} s I_{L}(s)=0
\end{aligned}
$$

Let us now look at some practical applications of what we've learned...

- Examples from my own research: Material Identification
- Analyzing circuits : Laplace Transform
- Wireless Communications : Z Transform

Filter Design : Fourier Transform

Multipath Signals in Wireless Communications

How do we model the signal (plus echoes) and remove the echoes?

Discrete-Time System Model

Perhaps only the green and red components are strong (and the rest are very weak)? If so, our model may look like:

$$
\begin{gathered}
y[n]=x[n]-\alpha x\left[n-N_{0}\right] \\
\alpha=0.8, N_{0}=11
\end{gathered}
$$

Using Z Transform (Frequency Domain) to Analyze and "Fix" the System

Using Z Transform (Frequency Domain) to Analyze and "Fix" the System

$$
H(z)=\frac{Y(z)}{X(z)}=1-0.8 z^{-11}=\frac{z^{11}-0.8}{z^{11}} \quad \xrightarrow{X[z]} \quad H[z] \quad Y[z]
$$

The environment behaves as a "comb" filter. How may we remove this effect to get original signal back?

The environment behaves as a "comb" filter. How may we remove this effect to get original signal back?

One way is to pass the received signal through a filter that cancels the zeros and poles of the system.

To get $\widehat{\boldsymbol{X}}[\mathbf{z}]=\boldsymbol{X}[\mathbf{z}]$ we must have $\boldsymbol{H}[\mathbf{z}] \boldsymbol{G}[\mathbf{z}]=\mathbf{1}$, which gives:

$$
G(z)=\frac{z^{11}}{z^{11}-0.8}
$$

This filter will remove the effect of multipath and give our original signal back.

Example signals.

Let us now look at some practical applications of what we've learned...

- Examples from my own research: Material Identification
- Analyzing circuits : Laplace Transform
- Wireless Communications : Z Transform
- Filter Design : Fourier Transform

Example of a Low Pass Filter

Using Fourier Transform Determine How the Filter's Cutoff Frequency is Linked to R and C

$$
\begin{gathered}
v_{i}(t)=R i(t)+\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau ; \quad v_{o}(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau \\
V_{i}(\omega)=R I(\omega)+\frac{1}{j \omega C} I(\omega), V_{o}(\omega)=\frac{1}{j \omega C} I(\omega)
\end{gathered}
$$

$$
\begin{gathered}
v_{i}(t)=R i(t)+\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau ; \quad v_{o}(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau \\
V_{i}(\omega)=R I(\omega)+\frac{1}{j \omega C} I(\omega), V_{o}(\omega)=\frac{1}{j \omega C} I(\omega)
\end{gathered}
$$

$$
\begin{aligned}
& H(\omega)=\frac{V_{o}(\omega)}{V_{i}(\omega)}=\frac{1}{1+j \omega R C} . \\
& |H(\omega)|=\frac{1}{\sqrt{1+\left(\omega / \omega_{c}\right)^{2}}} \\
& \omega_{c}=\frac{1}{R C}
\end{aligned}
$$

How should you change R and C if you would like to increase (or decrease) the cut-off
 frequency?

Questions?? Thoughts??

[^0]: A funny way to remember: No body likes delays (i.e., they are a negative thing)

[^1]: Impulse scaled to $\phi(T)$

[^2]: Rule 3: Sharp changes (edges) require a lot of frequencies

